IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224039434.html
   My bibliography  Save this article

Multiagent deep reinforcement learning-based cooperative optimal operation with strong scalability for residential microgrid clusters

Author

Listed:
  • Wang, Can
  • Wang, Mingchao
  • Wang, Aoqi
  • Zhang, Xiaojia
  • Zhang, Jiaheng
  • Ma, Hui
  • Yang, Nan
  • Zhao, Zhuoli
  • Lai, Chun Sing
  • Lai, Loi Lei

Abstract

With the rapid development of smart home technology, residential microgrid (RM) clusters have become an important way to utilize the demand-side resources of large-scale housing. However, there are some key problems in existing RM cluster optimization methods, such as difficult in adapting to the local observable environment and with poor privacy and scalability. Therefore, this paper proposes a multi-agent deep reinforcement learning (MADRL)-based RM cluster optimization operation method. First, with the aim of minimizing the energy cost of each residence while satisfying the comfort level of residents and avoiding transformer overload, the optimization scheduling problem of an RM cluster is described as a Markov game with an unknown state transition probability function. Then, a novel MADRL method is proposed to determine the optimal operation strategy of multiple RMs in this game paradigm. Each agent in the proposed method contains a collective strategy model and an independent learner. The collective strategy model can simulate the energy consumption of other RMs in the system and reflect its operating behavior. In addition, an independent learner based on a soft actor-critic (SAC) framework is used to learn the optimal scheduling strategy interactively with the environment. The proposed method has a completely decentralized and scalable structure, which can deal with continuous high-dimensional state and action spaces only requires local observations and approximations during training. Finally, a numerical example is given to verify that the proposed method can not only learn a stable cooperative energy management strategy but can also be extended to large-scale RM cluster problems. This gives the strong scalability and a high potential for practical application.

Suggested Citation

  • Wang, Can & Wang, Mingchao & Wang, Aoqi & Zhang, Xiaojia & Zhang, Jiaheng & Ma, Hui & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Multiagent deep reinforcement learning-based cooperative optimal operation with strong scalability for residential microgrid clusters," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039434
    DOI: 10.1016/j.energy.2024.134165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Most Nahida Akter & Md Apel Mahmud & Amanullah Maung Than Oo, 2017. "A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids," Energies, MDPI, vol. 10(12), pages 1-27, December.
    2. Schütz, Thomas & Hu, Xiaolin & Fuchs, Marcus & Müller, Dirk, 2018. "Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods," Energy, Elsevier, vol. 156(C), pages 250-263.
    3. Wang, Can & Wang, Zhen & Chu, Sihu & Ma, Hui & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2024. "A two-stage underfrequency load shedding strategy for microgrid groups considering risk avoidance," Applied Energy, Elsevier, vol. 367(C).
    4. Yang, Nan & Xiong, Zhendong & Ding, Li & Liu, Yikui & Wu, Lei & Liu, Zhao & Shen, Xun & Zhu, Binxin & Li, Zhenhua & Huang, Yuehua, 2024. "A game-based power system planning approach considering real options and coordination of all types of participants," Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zhuoli & Xu, Jiawen & Lei, Yu & Liu, Chang & Shi, Xuntao & Lai, Loi Lei, 2025. "Robust dynamic dispatch strategy for multi-uncertainties integrated energy microgrids based on enhanced hierarchical model predictive control," Applied Energy, Elsevier, vol. 381(C).
    2. Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanghe Liu & Hairong Zhang & Chuanfeng Wu & Mengxin Shao & Liting Zhou & Wenlong Fu, 2024. "A Short-Term Wind Speed Forecasting Framework Coupling a Maximum Information Coefficient, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Shared Weight Gated Memory Network with Im," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    2. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    3. Zheyuan Sun & Sara Tavakoli & Kaveh Khalilpour & Alexey Voinov & Jonathan Paul Marshall, 2024. "Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    4. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    6. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    7. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    8. Wang, Can & Zhang, Jiaheng & Wang, Aoqi & Wang, Zhen & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2024. "Prioritized sum-tree experience replay TD3 DRL-based online energy management of a residential microgrid," Applied Energy, Elsevier, vol. 368(C).
    9. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    10. Janko, Samantha & Johnson, Nathan G., 2020. "Reputation-based competitive pricing negotiation and power trading for grid-connected microgrid networks," Applied Energy, Elsevier, vol. 277(C).
    11. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2020. "A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition," Energy, Elsevier, vol. 197(C).
    12. Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
    13. Wenjie Pan & Jun Han & Chao Cai & Haofei Chen & Hong Liu & Zhengyang Xu, 2025. "Holistic Hosting Capacity Enhancement Through Sensitivity-Driven Flexibility Deployment and Uncertainty-Aware Optimization in Modern Distribution Networks," Energies, MDPI, vol. 18(3), pages 1-30, February.
    14. Ghanaee, Reza & Akbari Foroud, Asghar, 2019. "Enhanced structure and optimal capacity sizing method for turbo-expander based microgrid with simultaneous recovery of cooling and electrical energy," Energy, Elsevier, vol. 170(C), pages 284-304.
    15. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    17. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    18. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    19. Rigo-Mariani, Rémy, 2022. "Optimized time reduction models applied to power and energy systems planning – Comparison with existing methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Muhammad Babar & Jakub Grela & Andrzej Ożadowicz & Phuong H. Nguyen & Zbigniew Hanzelka & I. G. Kamphuis, 2018. "Energy Flexometer: Transactive Energy-Based Internet of Things Technology," Energies, MDPI, vol. 11(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.