Enhancing Wind Power Forecasting Accuracy Based on OPESC-Optimized CNN-BiLSTM-SA Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
- Zhao, Zhuoli & Xu, Jiawen & Lei, Yu & Liu, Chang & Shi, Xuntao & Lai, Loi Lei, 2025. "Robust dynamic dispatch strategy for multi-uncertainties integrated energy microgrids based on enhanced hierarchical model predictive control," Applied Energy, Elsevier, vol. 381(C).
- Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
- Wang, Can & Wang, Mingchao & Wang, Aoqi & Zhang, Xiaojia & Zhang, Jiaheng & Ma, Hui & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Multiagent deep reinforcement learning-based cooperative optimal operation with strong scalability for residential microgrid clusters," Energy, Elsevier, vol. 314(C).
- Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
- Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
- Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
- Zhiyong Guo & Fangzheng Wei & Wenkai Qi & Qiaoli Han & Huiyuan Liu & Xiaomei Feng & Minghui Zhang, 2024. "A Time Series Prediction Model for Wind Power Based on the Empirical Mode Decomposition–Convolutional Neural Network–Three-Dimensional Gated Neural Network," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
- Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.
- Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Fractional-order long-term price guidance mechanism based on bidirectional prediction with attention mechanism for electric vehicle charging," Energy, Elsevier, vol. 293(C).
- Wang, Can & Liu, Yuzheng & Zhang, Yu & Xi, Lei & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Strategy for optimizing the bidirectional time-of-use electricity price in multi-microgrids coupled with multilevel games," Energy, Elsevier, vol. 323(C).
- Gang Li & Chen Lin & Yupeng Li, 2025. "Probabilistic Forecasting of Provincial Regional Wind Power Considering Spatio-Temporal Features," Energies, MDPI, vol. 18(3), pages 1-17, January.
- Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
- Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
- Wang, Chao & Lin, Hong & Yang, Ming & Fu, Xiaoling & Yuan, Yue & Wang, Zewei, 2024. "A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
- Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
- Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
- Liu, Shuwei & Tian, Jianyan & Ji, Zhengxiong & Dai, Yuanyuan & Guo, Hengkuan & Yang, Shengqiang, 2024. "Research on multi-digital twin and its application in wind power forecasting," Energy, Elsevier, vol. 292(C).
- Ma, Kai & Nie, Xuefeng & Yang, Jie & Zha, Linlin & Li, Guoqiang & Li, Haibin, 2025. "A power load forecasting method in port based on VMD-ICSS-hybrid neural network," Applied Energy, Elsevier, vol. 377(PB).
- Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
- He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
- Bruno Neves de Campos & Daniela de Oliveira Maionchi & Junior Gonçalves da Silva & Marcelo Sacardi Biudes & Nicolas Neves de Oliveira & Rafael da Silva Palácios, 2025. "Photovoltaic Energy Modeling Using Machine Learning Applied to Meteorological Variables," Sustainability, MDPI, vol. 17(16), pages 1-18, August.
- Zhang, Huan & Liu, Tao & Liu, Wang & Zhou, Jianzhao & Zhang, Quanguo & Ren, Jingzheng, 2025. "An interpretable deep learning framework for photofermentation biological hydrogen production and process optimization," Energy, Elsevier, vol. 322(C).
- Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
- Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
- Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2174-:d:1693918. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.