IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v301y2021ics0306261921008540.html
   My bibliography  Save this article

Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids

Author

Listed:
  • Seshu Kumar, R.
  • Phani Raghav, L.
  • Koteswara Raju, D.
  • Singh, Arvind R.

Abstract

With the rapid proliferation of non-dispatchable energy sources, the need for demand-side management (DSM) strategies has become crucial to ensure affordability and reliability for end-users. The application of various diversified DSM strategies in the microgrid energy management system (EMS) is gaining popularity. This paper aims to solve the energy management problem of the microgrid in conjunction with both customer-oriented and utility-oriented DSM strategies for the first time in the literature. In light of this, a stochastic EMS framework is developed to implement and analyze the flexible load shaping DSM strategy, price-based, and incentive-based demand response programs (DRPs) in the presence of non-dispatchable energy resources. Further, the flexible price-oriented load model is adopted for price-driven and incentive-driven DRPs to depict the realistic assessment of consumers’ sensitivity to market prices. The scenario construction approach is employed to address the stochastic nature of renewable power generation, market prices, and load demand. With the complexities as mentioned above, the problem needs to be solved with a powerful optimizer sufficiently to enhance energy efficiency and optimize energy utilization. Hence, the recently reported novel metaheuristic algorithm (Black Widow Optimization) is applied to solve the proposed MG energy management problem in the MATLAB environment. The IEEE-34 node distribution feeder-based MG network is modified to study the proposed algorithm's performance, and a detailed analysis of various techno-economic indices is presented. The obtained simulation results are compared with existing popular algorithms to prove the efficacy of the proposed algorithm in terms of convergence, computational time, an optimum solution and the real-time market bid prices were considered in analysis for day-ahead scheduling of microgrid network.

Suggested Citation

  • Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008540
    DOI: 10.1016/j.apenergy.2021.117466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morsali, Roozbeh & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Stojcevski, Alex & Kowalczyk, Ryszard, 2020. "A relaxed constrained decentralised demand side management system of a community-based residential microgrid with realistic appliance models," Applied Energy, Elsevier, vol. 277(C).
    2. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    3. Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.
    4. Basu, Ashoke Kumar & Chowdhury, S.P. & Chowdhury, S. & Paul, S., 2011. "Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4348-4356.
    5. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    6. SoltaniNejad Farsangi, Alireza & Hadayeghparast, Shahrzad & Mehdinejad, Mehdi & Shayanfar, Heidarali, 2018. "A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs," Energy, Elsevier, vol. 160(C), pages 257-274.
    7. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    8. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    9. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    10. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    11. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    12. Kumar, R. Seshu & Raghav, L. Phani & Raju, D. Koteswara & Singh, Arvind R., 2021. "Intelligent demand side management for optimal energy scheduling of grid connected microgrids," Applied Energy, Elsevier, vol. 285(C).
    13. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    14. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2019. "A copula-based method to consider uncertainties for multi-objective energy management of microgrid in presence of demand response," Energy, Elsevier, vol. 175(C), pages 879-890.
    15. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    16. Meng, Lexuan & Sanseverino, Eleonora Riva & Luna, Adriana & Dragicevic, Tomislav & Vasquez, Juan C. & Guerrero, Josep M., 2016. "Microgrid supervisory controllers and energy management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1263-1273.
    17. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Abhishek & Deng, Yan & He, Xiangning & Singh, Arvind R. & Kumar, Praveen & Bansal, R.C. & Bettayeb, M. & Ghenai, C. & Naidoo, R.M., 2023. "Impact of demand side management approaches for the enhancement of voltage stability loadability and customer satisfaction index," Applied Energy, Elsevier, vol. 339(C).
    2. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    3. Dey, Bishwajit & Misra, Srikant & Garcia Marquez, Fausto Pedro, 2023. "Microgrid system energy management with demand response program for clean and economical operation," Applied Energy, Elsevier, vol. 334(C).
    4. Cui, Jindong & Ran, Zihan & Shen, Wei & Xin, Yechun, 2024. "Study on multi-type flexible load control method of active distribution network based on dynamic time-sharing electricity price," Applied Energy, Elsevier, vol. 357(C).
    5. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    6. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Turky, Rania A. & Jurado, Francisco, 2022. "Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach," Applied Energy, Elsevier, vol. 310(C).
    7. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    8. Hegazy Rezk & A. G. Olabi & Enas Taha Sayed & Tabbi Wilberforce, 2023. "Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    9. Qingyuan Yan & Zhaoyi Wang & Ling Xing & Chenchen Zhu, 2024. "Optimal Economic Analysis of Battery Energy Storage System Integrated with Electric Vehicles for Voltage Regulation in Photovoltaics Connected Distribution System," Sustainability, MDPI, vol. 16(19), pages 1-44, September.
    10. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    11. Masoud Dashtdar & Aymen Flah & Seyed Mohammad Sadegh Hosseinimoghadam & Hossam Kotb & Elżbieta Jasińska & Radomir Gono & Zbigniew Leonowicz & Michał Jasiński, 2022. "Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony," Sustainability, MDPI, vol. 14(11), pages 1-26, May.
    12. Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Kumar, R. Seshu & Raghav, L. Phani & Raju, D. Koteswara & Singh, Arvind R., 2021. "Intelligent demand side management for optimal energy scheduling of grid connected microgrids," Applied Energy, Elsevier, vol. 285(C).
    5. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Turky, Rania A. & Jurado, Francisco, 2022. "Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach," Applied Energy, Elsevier, vol. 310(C).
    6. Kalim Ullah & Quanyuan Jiang & Guangchao Geng & Rehan Ali Khan & Sheraz Aslam & Wahab Khan, 2022. "Optimization of Demand Response and Power-Sharing in Microgrids for Cost and Power Losses," Energies, MDPI, vol. 15(9), pages 1-22, April.
    7. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F., 2021. "A novel microgrid support management system based on stochastic mixed-integer linear programming," Energy, Elsevier, vol. 223(C).
    8. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    9. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    10. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    12. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Two-Stage Optimal Microgrid Operation with a Risk-Based Hybrid Demand Response Program Considering Uncertainty," Energies, MDPI, vol. 13(22), pages 1-25, November.
    13. Hwang Goh, Hui & Shi, Shuaiwei & Liang, Xue & Zhang, Dongdong & Dai, Wei & Liu, Hui & Yuong Wong, Shen & Agustiono Kurniawan, Tonni & Chen Goh, Kai & Leei Cham, Chin, 2022. "Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty," Applied Energy, Elsevier, vol. 327(C).
    14. Xin Li & Jingang Lai & Ruoli Tang, 2017. "A Hybrid Constraints Handling Strategy for Multiconstrained Multiobjective Optimization Problem of Microgrid Economical/Environmental Dispatch," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    15. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    16. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    17. Kansal, Gaurav & Tiwari, Rajive, 2024. "A PEM-based augmented IBDR framework and its evaluation in contemporary distribution systems," Energy, Elsevier, vol. 296(C).
    18. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    19. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    20. Hakimi, Seyed Mehdi & Hasankhani, Arezoo & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Stochastic planning of a multi-microgrid considering integration of renewable energy resources and real-time electricity market," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.