IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v43y2012i1p427-437.html
   My bibliography  Save this article

Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm

Author

Listed:
  • Niknam, Taher
  • Golestaneh, Faranak
  • Malekpour, Ahmadreza

Abstract

Recently, due to technology improvements, governmental incentives for the use of green energies and rising concerns about high cost of energy from fossil fuels, renewable energy sources (RESs) appears to be a promising approach for producing local, clean, and inexhaustible energy. This motivates the implementation of microgrids (MGs) introduced as a cluster of electrical and/or thermal loads and different RESs. Due to different uncertainties linked to electricity supply in renewable microgrids, probabilistic energy management techniques are going to be necessary to analyze the system. This paper proposes a probabilistic approach for the energy and operation management (EOM) of renewable MGs under uncertain environment. The proposed framework consists of 2m point estimate method for covering the existing uncertainties in the MGs and a self-adaptive optimization algorithm based on the gravitational search algorithm (GSA) to determine the optimal energy management of MGs. This paper considers uncertainties in load demand, market prices and the available electrical power of wind farms and photovoltaic systems. In this study, a self-adaptive mutation technique is offered to enhance the convergence characteristics of the original GSA and avoid being entrapped into local optima. The Weibull and normal distributions are employed to model the input random variables. Moreover, the Gram–Charlier expansion is used to find an accurate distribution of the total energy and operational cost of MGs for the next day-ahead. The effectiveness of the proposed method is validated on a typical grid-connected MG including energy storage and different power generating units.

Suggested Citation

  • Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.
  • Handle: RePEc:eee:energy:v:43:y:2012:i:1:p:427-437
    DOI: 10.1016/j.energy.2012.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212002678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    2. Malekpour, Ahmad Reza & Niknam, Taher, 2011. "A probabilistic multi-objective daily Volt/Var control at distribution networks including renewable energy sources," Energy, Elsevier, vol. 36(5), pages 3477-3488.
    3. Sanseverino, Eleonora Riva & Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & De Paola, Alessandra & Lo Re, Giuseppe, 2011. "An execution, monitoring and replanning approach for optimal energy management in microgrids," Energy, Elsevier, vol. 36(5), pages 3429-3436.
    4. Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
    5. Choudhry, Mohammad A. & Khan, Hasham, 2010. "Power loss reduction in radial distribution system with multiple distributed energy resources through efficient islanding detection," Energy, Elsevier, vol. 35(12), pages 4843-4861.
    6. Pantoš, Miloš, 2011. "Stochastic optimal charging of electric-drive vehicles with renewable energy," Energy, Elsevier, vol. 36(11), pages 6567-6576.
    7. Obara, Shin’ya & Watanabe, Seizi & Rengarajan, Balaji, 2011. "Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump," Energy, Elsevier, vol. 36(8), pages 5200-5213.
    8. Dali, Mehdi & Belhadj, Jamel & Roboam, Xavier, 2010. "Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation," Energy, Elsevier, vol. 35(6), pages 2587-2595.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niknam, Taher & Golestaneh, Faranak & Shafiei, Mehdi, 2013. "Probabilistic energy management of a renewable microgrid with hydrogen storage using self-adaptive charge search algorithm," Energy, Elsevier, vol. 49(C), pages 252-267.
    2. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    3. Wang, Chengshan & Liu, Yixin & Li, Xialin & Guo, Li & Qiao, Lei & Lu, Hai, 2016. "Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system," Energy, Elsevier, vol. 97(C), pages 90-104.
    4. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    5. Sharma, Sharmistha & Bhattacharjee, Subhadeep & Bhattacharya, Aniruddha, 2018. "Probabilistic operation cost minimization of Micro-Grid," Energy, Elsevier, vol. 148(C), pages 1116-1139.
    6. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    7. Kim, Tae Hyun & Shin, Hansol & Kwag, Kyuhyeong & Kim, Wook, 2020. "A parallel multi-period optimal scheduling algorithm in microgrids with energy storage systems using decomposed inter-temporal constraints," Energy, Elsevier, vol. 202(C).
    8. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    9. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    10. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    11. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    12. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    13. Incheol Shin, 2020. "Approximation Algorithm-Based Prosumer Scheduling for Microgrids," Energies, MDPI, vol. 13(21), pages 1-16, November.
    14. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    15. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    16. Xin Li & Jingang Lai & Ruoli Tang, 2017. "A Hybrid Constraints Handling Strategy for Multiconstrained Multiobjective Optimization Problem of Microgrid Economical/Environmental Dispatch," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    17. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    18. Yang, Libing & Entchev, Evgueniy & Ghorab, Mohamed & Lee, Euy-Joon & Kang, Eun-Chul & Kim, Yu-Jin & Nam, Yujin & Bae, Sangmu & Kim, Kwonye, 2022. "Advanced smart trigeneration energy system design for commercial building applications – Energy and cost performance analyses," Energy, Elsevier, vol. 259(C).
    19. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    20. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:43:y:2012:i:1:p:427-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.