IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4280-d1722358.html
   My bibliography  Save this article

A Comprehensive Optimization Framework for Techno-Economic Demand Side Management in Integrated Energy Systems

Author

Listed:
  • Moataz Ayman Shaker

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Ibrahim Mohamed Diaaeldin

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Mahmoud A. Attia

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Amr Khaled Khamees

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Othman A. M. Omar

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Mohammed Alruwaili

    (Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia)

  • Ali Elrashidi

    (Electrical Engineering Department, University of Business and Technology, Jeddah 23435, Saudi Arabia)

  • Nabil M. Hamed

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

Abstract

This paper proposes a comprehensive mathematical optimization framework for techno-economic demand side management (DSM) in hybrid energy systems (HESs), with a focus on standalone configurations. The framework incorporates load growth projections and the probabilistic uncertainties of renewable energy sources to enhance planning robustness. To identify high-quality near-optimal solutions, several advanced metaheuristic algorithms were employed, including the Exponential Distribution Optimizer (EDO), Teaching-Learning-Based Optimization (TLBO), Circle Search Algorithm (CSA), and Wild Horse Optimizer (WHO). The results highlight substantial economic and environmental improvements, with battery integration yielding a 69.7% reduction in total system cost and an 84.3% decrease in emissions. Additionally, this study evaluated the influence of future load growth on fuel expenditure, offering realistic insights into the techno-economic viability of HES deployment.

Suggested Citation

  • Moataz Ayman Shaker & Ibrahim Mohamed Diaaeldin & Mahmoud A. Attia & Amr Khaled Khamees & Othman A. M. Omar & Mohammed Alruwaili & Ali Elrashidi & Nabil M. Hamed, 2025. "A Comprehensive Optimization Framework for Techno-Economic Demand Side Management in Integrated Energy Systems," Energies, MDPI, vol. 18(16), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4280-:d:1722358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. M. Shaheen & Zia Ullah & Mohammed H. Qais & Hany M. Hasanien & Kian J. Chua & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Clausen, Laura Tolnov & Rudolph, David, 2020. "Renewable energy for sustainable rural development: Synergies and mismatches," Energy Policy, Elsevier, vol. 138(C).
    3. Mohammed H. Qais & Hany M. Hasanien & Rania A. Turky & Saad Alghuwainem & Marcos Tostado-Véliz & Francisco Jurado, 2022. "Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm," Mathematics, MDPI, vol. 10(10), pages 1-27, May.
    4. Ameer A. Kareim Al-Sahlawi & Shahrin Md. Ayob & Chee Wei Tan & Hussein Mohammed Ridha & Dhafer Manea Hachim, 2024. "Optimal Design of Grid-Connected Hybrid Renewable Energy System Considering Electric Vehicle Station Using Improved Multi-Objective Optimization: Techno-Economic Perspectives," Sustainability, MDPI, vol. 16(6), pages 1-35, March.
    5. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Om Prakash Mahela & Ramakrishna S. S. Nuvvula & Divine Khan Ngwashi & Emmanuel Soriano Flores & Emmanuel Tanyi, 2023. "Techno-Economic Analysis and Optimization of Hybrid Renewable Energy System with Energy Storage under Two Operational Modes," Sustainability, MDPI, vol. 15(15), pages 1-31, July.
    6. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    7. Al Dawsari, Saleh & Anayi, Fatih & Packianather, Michael, 2024. "Techno-economic analysis of hybrid renewable energy systems for cost reduction and reliability improvement using dwarf mongoose optimization algorithm," Energy, Elsevier, vol. 313(C).
    8. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2009. "Application of design space methodology for optimum sizing of wind-battery systems," Applied Energy, Elsevier, vol. 86(12), pages 2690-2703, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    2. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    3. Petr Hlavacek & Vladim r Skaln k, 2021. "The Implementation of Smart Energy into Transformation of the Rural Area: The Use of Public Policies for Smart Villages Development," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 1-6.
    4. Yue Li & Muhammad Tayyab Sohail & Yanan Zhang & Sana Ullah, 2024. "Bioenergy for Sustainable Rural Development: Elevating Government Governance with Environmental Policy in China," Land, MDPI, vol. 13(12), pages 1-18, December.
    5. Viccaro, Mauro & Romano, Severino & Prete, Carmelina & Cozzi, Mario, 2021. "Rural planning? An integrated dynamic model for assessing quality of life at a local scale," Land Use Policy, Elsevier, vol. 111(C).
    6. Mohamed Abdel-Basset & Reda Mohamed & Karam M. Sallam & Ripon K. Chakrabortty, 2022. "Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-63, September.
    7. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    8. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    9. Hung, Duong Quoc & Mithulananthan, N., 2014. "Loss reduction and loadability enhancement with DG: A dual-index analytical approach," Applied Energy, Elsevier, vol. 115(C), pages 233-241.
    10. Zhang, Chao & Fan, Yupeng & Fang, Chuanglin, 2024. "Orderly and synergistic development of urban-rural integration based on evolutionary game model: A case study in the Jiangxi Province, China," Land Use Policy, Elsevier, vol. 146(C).
    11. Mohamed A. M. Shaheen & Zia Ullah & Mohammed H. Qais & Hany M. Hasanien & Kian J. Chua & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, November.
    12. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    13. Shantha Indrajith H. Liyanage & Fulu Godfrey Netswera & Abel Motsumi, 2021. "Insights from EU Policy Framework in Aligning Sustainable Finance for Sustainable Development in Africa and Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 459-470.
    14. Ozkaya, Burcin, 2024. "Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy," Applied Energy, Elsevier, vol. 368(C).
    15. Kong, Xiangrui & Xu, Xiaoyuan & Yan, Zheng & Chen, Sijie & Yang, Huoming & Han, Dong, 2018. "Deep learning hybrid method for islanding detection in distributed generation," Applied Energy, Elsevier, vol. 210(C), pages 776-785.
    16. John, Bony & Varghese, James, 2021. "Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems," Energy, Elsevier, vol. 221(C).
    17. Yun Deng & Xueling Ran & Hussien Elshareef & Renjie Dong & Yuguang Zhou, 2025. "Emergy, Environmental and Economic (3E) Assessment of Biomass Pellets from Agricultural Waste," Agriculture, MDPI, vol. 15(6), pages 1-17, March.
    18. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    19. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    20. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4280-:d:1722358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.