IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4209-d1719992.html
   My bibliography  Save this article

Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System

Author

Listed:
  • Roberta Caponi

    (Department of Engineering Science, Guglielmo Marconi University, Via Paolo Emilio 29, 00192 Rome, Italy)

  • Domenico Vizza

    (Department of Engineering Science, Guglielmo Marconi University, Via Paolo Emilio 29, 00192 Rome, Italy)

  • Claudia Bassano

    (ENEA—Italian Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy)

  • Luca Del Zotto

    (CREAT—Energy Research Center, eCampus University, 22060 Novedrate, Italy)

  • Enrico Bocci

    (Department of Engineering Science, Guglielmo Marconi University, Via Paolo Emilio 29, 00192 Rome, Italy)

Abstract

Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production.

Suggested Citation

  • Roberta Caponi & Domenico Vizza & Claudia Bassano & Luca Del Zotto & Enrico Bocci, 2025. "Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System," Energies, MDPI, vol. 18(15), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4209-:d:1719992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    2. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    3. Marius C. Möller & Stefan Krauter, 2022. "Hybrid Energy System Model in Matlab/Simulink Based on Solar Energy, Lithium-Ion Battery and Hydrogen," Energies, MDPI, vol. 15(6), pages 1-23, March.
    4. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    5. Sarsar, Lamiae & Echaoui, Abdellah, 2024. "Empirical analysis of the economic complexity boost on the impact of energy transition on economic growth: A panel data study of 124 countries," Energy, Elsevier, vol. 294(C).
    6. Tjarks, Geert & Gibelhaus, Andrej & Lanzerath, Franz & Müller, Martin & Bardow, André & Stolten, Detlef, 2018. "Energetically-optimal PEM electrolyzer pressure in power-to-gas plants," Applied Energy, Elsevier, vol. 218(C), pages 192-198.
    7. Xu, Guanxin & Wu, Yan & Tang, Shuo & Wang, Yufei & Yu, Xinhai & Ma, Mingyan, 2024. "Optimal design of hydrogen production processing coupling alkaline and proton exchange membrane electrolyzers," Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojarska, Zuzanna & Karnas, Maria Jarząbek & Godula-Jopek, Agata & Mandrek, Sławomir & Makowski, Łukasz, 2025. "Simultaneous hydrogen generation and organic oxidation in low-temperature electrolyzers," Applied Energy, Elsevier, vol. 389(C).
    2. Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
    3. Hernández-Gómez, Ángel & Ramirez, Victor & Guilbert, Damien & Saldivar, Belem, 2021. "Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation," Renewable Energy, Elsevier, vol. 163(C), pages 1508-1522.
    4. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    5. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Miao, Zheng & Jia, Tianxu & Xu, Jinliang & Xu, Chao, 2025. "Effect of the anisotropy of gas diffusion layer on transport characteristics and performance of a PEM electrolysis cell," Energy, Elsevier, vol. 323(C).
    7. Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
    8. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    9. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    10. Viglioni, Marco Túlio Dinali & Calegario, Cristina Lelis Leal & Bruhn, Nádia Campos Pereira, 2025. "Effects of economic complexity and metallic mineral resources on renewable energy transition in developing countries," Resources Policy, Elsevier, vol. 102(C).
    11. Sarsar, Lamiae, 2025. "Green hydrogen impact on economic growth: A cross-sectional analysis of 29 European countries," Renewable Energy, Elsevier, vol. 246(C).
    12. Abdellatif Azzaoui & Mohammed Attiaoui & Elmiloud Chaabelasri & Hugo Gonçalves Silva & Ahmed Alami Merrouni, 2025. "Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs," Energies, MDPI, vol. 18(14), pages 1-26, July.
    13. Paolo Pilati & Federico Ferrari & Riccardo Alleori & Francesco Falcetelli & Maria Alessandra Ancona & Francesco Melino & Michele Bianchi & Mattia Ricco, 2025. "Experimental Analysis on a Commercial Power Electronic Converter in Power-to-Hydrogen System Based on PEM Electrolysis and Metal Hydrides," Energies, MDPI, vol. 18(11), pages 1-16, May.
    14. Daniela S. Falcão, 2023. "Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives," Energies, MDPI, vol. 16(2), pages 1-8, January.
    15. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    17. Shanbhag, Mahesh M. & Mishra, Shanu & Shetti, Nagaraj P. & Pollet, Bruno G. & Kalanur, Shankara S., 2025. "Exploring the role of saline water splitting in sustainable energy solutions and hydrogen economy," Applied Energy, Elsevier, vol. 389(C).
    18. Bernd Emonts & Martin Müller & Michael Hehemann & Holger Janßen & Roger Keller & Markus Stähler & Andrea Stähler & Veit Hagenmeyer & Roland Dittmeyer & Peter Pfeifer & Simon Waczowicz & Michael Rubin , 2022. "A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling," Energies, MDPI, vol. 15(10), pages 1-24, May.
    19. Mustafa Ergin Şahin, 2024. "An Overview of Different Water Electrolyzer Types for Hydrogen Production," Energies, MDPI, vol. 17(19), pages 1-20, October.
    20. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4209-:d:1719992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.