IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013563.html
   My bibliography  Save this article

A comprehensive review of alkaline water electrolysis mathematical modeling

Author

Listed:
  • Hu, Song
  • Guo, Bin
  • Ding, Shunliang
  • Yang, Fuyuan
  • Dang, Jian
  • Liu, Biao
  • Gu, Junjie
  • Ma, Jugang
  • Ouyang, Minggao

Abstract

Alkaline water electrolysis (AWE) is a relatively mature water electrolysis technology that plays an important role in large-scale green hydrogen production and electrical energy storage. Modeling is a powerful tool for the phenomenon understanding, control analysis, and optimization management of AWE. AWE has various modeling forms, but reviews summarizing the current situation and problems of modeling development are lacking. This review provides a detailed and comprehensive investigation of existing modeling efforts on thermodynamic, electrochemical, thermal, and gas purity models. In the process of investigating these models in the published reference, a concise modeling guideline was created to show the relationship between different sub-models. This review also summarized and compared the different modeling approaches for the same processes or mechanisms. On this basis, the effects of characteristic parameters and operating conditions on AWE performance were summarized in detail. Meanwhile, the strengths, weaknesses, and lacks in this research field were pointed out. Electrochemical modeling studies are comprehensive, but the accuracy of each sub-model during model calibration requires specialized experimental validation. Gas purity modeling research is rare, and the model prediction accuracy can reach a satisfactory level. The control strategy and optimization method of gas purity based on the model need to be developed urgently. Thermal modeling-related studies are rare, and the prediction accuracy still needs to be further improved. The application scope and thermal management strategy based on thermal model need to be explored in depth. This work can provide guidelines for beginners and a future direction for further improvement of AWE modeling.

Suggested Citation

  • Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013563
    DOI: 10.1016/j.apenergy.2022.120099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jang, Dohyung & Cho, Hyun-Seok & Kang, Sanggyu, 2021. "Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system," Applied Energy, Elsevier, vol. 287(C).
    2. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    3. Song Hu & Stefano d’Ambrosio & Roberto Finesso & Andrea Manelli & Mario Rocco Marzano & Antonio Mittica & Loris Ventura & Hechun Wang & Yinyan Wang, 2019. "Comparison of Physics-Based, Semi-Empirical and Neural Network-Based Models for Model-Based Combustion Control in a 3.0 L Diesel Engine," Energies, MDPI, vol. 12(18), pages 1-41, September.
    4. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    5. Xiaoyu Yan & Jasper Biemolt & Kai Zhao & Yang Zhao & Xiaojuan Cao & Ying Yang & Xiaoyu Wu & Gadi Rothenberg & Ning Yan, 2021. "A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    7. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    9. Bensmann, B. & Hanke-Rauschenbach, R. & Müller-Syring, G. & Henel, M. & Sundmacher, K., 2016. "Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications," Applied Energy, Elsevier, vol. 167(C), pages 107-124.
    10. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2017. "Modelling and simulation of an alkaline electrolyser cell," Energy, Elsevier, vol. 138(C), pages 316-331.
    11. Dang, Jian & Yang, Fuyuan & Li, Yangyang & Zhao, Yingpeng & Ouyang, Minggao & Hu, Song, 2022. "Experiments and microsimulation of high-pressure single-cell PEM electrolyzer," Applied Energy, Elsevier, vol. 321(C).
    12. Olivier, Pierre & Bourasseau, Cyril & Bouamama, Pr. Belkacem, 2017. "Low-temperature electrolysis system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 280-300.
    13. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    14. Hu, Kewei & Fang, Jiakun & Ai, Xiaomeng & Huang, Danji & Zhong, Zhiyao & Yang, Xiaobo & Wang, Lei, 2022. "Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling," Applied Energy, Elsevier, vol. 312(C).
    15. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    16. Mazloomi, S.K. & Sulaiman, Nasri, 2012. "Influencing factors of water electrolysis electrical efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4257-4263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Yang & Xiaoming Xu & Yuehua Li & Dongfang Chen & Song Hu & Ziwen He & Yi Du, 2023. "A Review on Mass Transfer in Multiscale Porous Media in Proton Exchange Membrane Fuel Cells: Mechanism, Modeling, and Parameter Identification," Energies, MDPI, vol. 16(8), pages 1-24, April.
    2. Jianhua Lei & Hui Ma & Geng Qin & Zhihua Guo & Peizhou Xia & Chuantong Hao, 2024. "A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems," Energies, MDPI, vol. 17(4), pages 1-37, February.
    3. Ibáñez-Rioja, Alejandro & Järvinen, Lauri & Puranen, Pietari & Kosonen, Antti & Ruuskanen, Vesa & Hynynen, Katja & Ahola, Jero & Kauranen, Pertti, 2023. "Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control," Applied Energy, Elsevier, vol. 345(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Danji & Xiong, Binyu & Fang, Jiakun & Hu, Kewei & Zhong, Zhiyao & Ying, Yuheng & Ai, Xiaomeng & Chen, Zhe, 2022. "A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell," Applied Energy, Elsevier, vol. 314(C).
    2. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Zheng, Yi & You, Shi & Bindner, Henrik W. & Münster, Marie, 2022. "Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics," Applied Energy, Elsevier, vol. 307(C).
    4. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    6. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    8. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    9. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    10. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    11. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    12. George, Jan Frederick & Müller, Viktor Paul & Winkler, Jenny & Ragwitz, Mario, 2022. "Is blue hydrogen a bridging technology? - The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany," Energy Policy, Elsevier, vol. 167(C).
    13. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
    16. Yassuda Yamashita, Daniela & Vechiu, Ionel & Gaubert, Jean-Paul, 2021. "Two-level hierarchical model predictive control with an optimised cost function for energy management in building microgrids," Applied Energy, Elsevier, vol. 285(C).
    17. Baldi, Francesco & Coraddu, Andrea & Kalikatzarakis, Miltiadis & Jeleňová, Diana & Collu, Maurizio & Race, Julia & Maréchal, François, 2022. "Optimisation-based system designs for deep offshore wind farms including power to gas technologies," Applied Energy, Elsevier, vol. 310(C).
    18. Park, Joungho & Hwan Ryu, Kyung & Kim, Chang-Hee & Chul Cho, Won & Kim, MinJoong & Hun Lee, Jae & Cho, Hyun-Seok & Lee, Jay H., 2023. "Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis," Applied Energy, Elsevier, vol. 340(C).
    19. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.