IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3806-d1703928.html
   My bibliography  Save this article

Flexible Operation of High-Temperature Heat Pumps Through Sizing and Control of Energy Stored in Integrated Steam Accumulators

Author

Listed:
  • Andrea Vecchi

    (Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia)

  • Jose Hector Bastida Hernandez

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Adriano Sciacovelli

    (Department of Civil and Mechanical Engineering, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark)

Abstract

Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply via HTHPs and aims to assess how variations in power input that result from flexible HTHP operation may affect steam flow and temperature, both with and without a downstream steam accumulator (SA). First, steady-state modelling is used for system design. Then, dynamic component models are developed and used to simulate the system response to HTHP power input variations. The performance of different SA integration layouts and sizes is evaluated. Results demonstrate that steam supply fluctuations closely follow changes in HTHP operation. A downstream SA is shown to mitigate these variations to an extent that depends on its capacity. Practical SA sizing recommendations are derived, which allow for the containment of steam supply fluctuations within acceptability. By providing a basis for evaluating the financial viability of flexible HTHP operation for steam provision, the results support clean technology’s development and uptake in industrial steam and district heating networks.

Suggested Citation

  • Andrea Vecchi & Jose Hector Bastida Hernandez & Adriano Sciacovelli, 2025. "Flexible Operation of High-Temperature Heat Pumps Through Sizing and Control of Energy Stored in Integrated Steam Accumulators," Energies, MDPI, vol. 18(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3806-:d:1703928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    2. Niknam, Pouriya H & Sciacovelli, Adriano, 2023. "Hybrid PCM-steam thermal energy storage for industrial processes – Link between thermal phenomena and techno-economic performance through dynamic modelling," Applied Energy, Elsevier, vol. 331(C).
    3. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    4. Knorr, Lukas & Schlosser, Florian & Horstmann, Nils & Divkovic, Denis & Meschede, Henning, 2024. "Flexible operation and integration of high-temperature heat pumps using large temperature glides," Applied Energy, Elsevier, vol. 368(C).
    5. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    6. Garcia, Pierre & Largiller, Grégory, 2022. "Performances and control aspects of steam storage systems with PCM: Key learnings from a pilot-scale prototype," Applied Energy, Elsevier, vol. 325(C).
    7. Bergamini, Riccardo & Jensen, Jonas Kjær & Elmegaard, Brian, 2019. "Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution," Energy, Elsevier, vol. 182(C), pages 110-121.
    8. Wolscht, Leonhard & Knobloch, Kai & Jacquemoud, Emmanuel & Jenny, Philipp, 2024. "Dynamic simulation and experimental validation of a 35 MW heat pump based on a transcritical CO2 cycle," Energy, Elsevier, vol. 294(C).
    9. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    10. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    11. Naumann, Gabriel & Schropp, Elke & Gaderer, Matthias, 2025. "Predictive rule-based control for an air-source heat pump system: Environmental and economic impacts in future energy scenarios," Applied Energy, Elsevier, vol. 396(C).
    12. Kasper, Lukas & Pernsteiner, Dominik & Schirrer, Alexander & Jakubek, Stefan & Hofmann, René, 2023. "Experimental characterization, parameter identification and numerical sensitivity analysis of a novel hybrid sensible/latent thermal energy storage prototype for industrial retrofit applications," Applied Energy, Elsevier, vol. 344(C).
    13. Meesenburg, Wiebke & Markussen, Wiebke Brix & Ommen, Torben & Elmegaard, Brian, 2020. "Optimizing control of two-stage ammonia heat pump for fast regulation of power uptake," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    3. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    4. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    5. Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    6. Werner, Sven, 2022. "Network configurations for implemented low-temperature district heating," Energy, Elsevier, vol. 254(PB).
    7. Andersen, Martin Pihl & Zühlsdorf, Benjamin & Markussen, Wiebke Brix & Jensen, Jonas Kjær & Elmegaard, Brian, 2024. "Selection of working fluids and heat pump cycles at high temperatures: Creating a concise technology portfolio," Applied Energy, Elsevier, vol. 376(PB).
    8. Dhirendran Munith Kumar & Pietro Catrini & Antonio Piacentino & Maurizio Cirrincione, 2023. "Integrated Thermodynamic and Control Modeling of an Air-to-Water Heat Pump for Estimating Energy-Saving Potential and Flexibility in the Building Sector," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    9. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    10. Figueira, João S. & García Gil, Alejandro & Vieira, Ana & Michopoulos, Apostolos K. & Boon, David P. & Loveridge, Fleur & Cecinato, Francesco & Götzl, Gregor & Epting, Jannis & Zosseder, Kai & Bloemen, 2024. "Shallow geothermal energy systems for district heating and cooling networks: Review and technological progression through case studies," Renewable Energy, Elsevier, vol. 236(C).
    11. Terreros, O. & Spreitzhofer, J. & Basciotti, D. & Schmidt, R.R. & Esterl, T. & Pober, M. & Kerschbaumer, M. & Ziegler, M., 2020. "Electricity market options for heat pumps in rural district heating networks in Austria," Energy, Elsevier, vol. 196(C).
    12. Giuseppe Edoardo Dino & Pietro Catrini & Valeria Palomba & Andrea Frazzica & Antonio Piacentino, 2023. "Promoting the Flexibility of Thermal Prosumers Equipped with Heat Pumps to Support Power Grid Management," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    13. Brunt, Nicholas & Duquette, Jean & O'Brien, William, 2023. "Techno-economic and environmental performance of two state-of-the-art solar-assisted district energy system topologies," Energy, Elsevier, vol. 276(C).
    14. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    15. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    16. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    19. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    20. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3806-:d:1703928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.