IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8664-d1156852.html
   My bibliography  Save this article

Integrated Thermodynamic and Control Modeling of an Air-to-Water Heat Pump for Estimating Energy-Saving Potential and Flexibility in the Building Sector

Author

Listed:
  • Dhirendran Munith Kumar

    (Department of Engineering, University of Palermo, Viale Delle Scienze, 90128 Palermo, Italy)

  • Pietro Catrini

    (Department of Engineering, University of Palermo, Viale Delle Scienze, 90128 Palermo, Italy)

  • Antonio Piacentino

    (Department of Engineering, University of Palermo, Viale Delle Scienze, 90128 Palermo, Italy)

  • Maurizio Cirrincione

    (School of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific (USP), Laucala Campus, Private Mail Bag, Suva P.O. Box 1168, Fiji Islands)

Abstract

Reversible heat pumps are increasingly adopted for meeting the demand for space heating and cooling in buildings. These technologies will play a key role not only in the decarbonization of space air conditioning but also in the development of 100% renewable energy systems. However, to assess the achievable benefits through the adoption of these technologies in novel applications, reliable models are needed, capable of simulating both their steady-state operation and dynamic response at different conditions in terms of heating loads, outdoor temperatures, and so on. The operation of heat pumps is often investigated by highly simplified models, using performance data drawn from catalogs and paying scarce attention to the critical influence of controllers. In this respect, this paper proposed an integrated thermodynamic and control modeling for a reversible air-to-water heat pump. The study considered a heat pump alternatively equipped with variable-speed compressors and constant-speed compressors with sequential control. The developed modeling was then used to investigate the operation of an air-to-water heat pump serving an office building in Italy. Results show that the model provided insights into the transient operation of variable-speed heat pumps (e.g., the settling time). Regarding constant-speed heat pumps, the model provided hints of interest to the control engineer to prevent, in the examined case study, the risk of quick compressors cycling on low-load heating days or when low-temperature heating devices are supplied. Finally, using a control strategy based on a heating curve for the variable-speed heat pump, results show the potential for a sensible increase in the average coefficient of performance, from 17% up to 50%.

Suggested Citation

  • Dhirendran Munith Kumar & Pietro Catrini & Antonio Piacentino & Maurizio Cirrincione, 2023. "Integrated Thermodynamic and Control Modeling of an Air-to-Water Heat Pump for Estimating Energy-Saving Potential and Flexibility in the Building Sector," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8664-:d:1156852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    2. Maier, Laura & Schönegge, Marius & Henn, Sarah & Hering, Dominik & Müller, Dirk, 2022. "Assessing mixed-integer-based heat pump modeling approaches for model predictive control applications in buildings," Applied Energy, Elsevier, vol. 326(C).
    3. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
    4. Arslan Ahmad Bashir & Andreas Lund & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Optimizing Power and Heat Sector Coupling for the Implementation of Carbon-Free Communities," Energies, MDPI, vol. 14(7), pages 1-20, March.
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Ryan S. Montrose & John F. Gardner & Aykut C. Satici, 2021. "Centralized and Decentralized Optimal Control of Variable Speed Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-18, July.
    7. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    8. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    9. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    10. Romero Rodríguez, Laura & Brennenstuhl, Marcus & Yadack, Malcolm & Boch, Pirmin & Eicker, Ursula, 2019. "Heuristic optimization of clusters of heat pumps: A simulation and case study of residential frequency reserve," Applied Energy, Elsevier, vol. 233, pages 943-958.
    11. Clauß, John & Georges, Laurent, 2019. "Model complexity of heat pump systems to investigate the building energy flexibility and guidelines for model implementation," Applied Energy, Elsevier, vol. 255(C).
    12. Ma, Jiacheng & Kim, Donghun & Braun, James E. & Horton, W. Travis, 2023. "Development and validation of a dynamic modeling framework for air-source heat pumps under cycling of frosting and reverse-cycle defrosting," Energy, Elsevier, vol. 272(C).
    13. Muhammad Abid & Neil Hewitt & Ming-Jun Huang & Christopher Wilson & Donal Cotter, 2021. "Domestic Retrofit Assessment of the Heat Pump System Considering the Impact of Heat Supply Temperature and Operating Mode of Control—A Case Study," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    14. Meesenburg, Wiebke & Markussen, Wiebke Brix & Ommen, Torben & Elmegaard, Brian, 2020. "Optimizing control of two-stage ammonia heat pump for fast regulation of power uptake," Applied Energy, Elsevier, vol. 271(C).
    15. Lorenzo Bartolucci & Stefano Cordiner & Vincenzo Mulone & Marina Santarelli, 2019. "Ancillary Services Provided by Hybrid Residential Renewable Energy Systems through Thermal and Electrochemical Storage Systems," Energies, MDPI, vol. 12(12), pages 1-18, June.
    16. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Ehsan, Ali & Preece, Robin, 2022. "Quantifying the impacts of heat decarbonisation pathways on the future electricity and gas demand," Energy, Elsevier, vol. 254(PA).
    18. Baeten, Brecht & Rogiers, Frederik & Helsen, Lieve, 2017. "Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response," Applied Energy, Elsevier, vol. 195(C), pages 184-195.
    19. Alessia Arteconi & Fabio Polonara, 2018. "Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings," Energies, MDPI, vol. 11(7), pages 1-19, July.
    20. Anjan Rao Puttige & Staffan Andersson & Ronny Östin & Thomas Olofsson, 2021. "Application of Regression and ANN Models for Heat Pumps with Field Measurements," Energies, MDPI, vol. 14(6), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Edoardo Dino & Pietro Catrini & Valeria Palomba & Andrea Frazzica & Antonio Piacentino, 2023. "Promoting the Flexibility of Thermal Prosumers Equipped with Heat Pumps to Support Power Grid Management," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    2. Zhuang, Chaoqun & Choudhary, Ruchi & Mavrogianni, Anna, 2023. "Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability," Applied Energy, Elsevier, vol. 341(C).
    3. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).
    4. D’Ettorre, F. & Banaei, M. & Ebrahimy, R. & Pourmousavi, S. Ali & Blomgren, E.M.V. & Kowalski, J. & Bohdanowicz, Z. & Łopaciuk-Gonczaryk, B. & Biele, C. & Madsen, H., 2022. "Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Meesenburg, Wiebke & Markussen, Wiebke Brix & Ommen, Torben & Elmegaard, Brian, 2020. "Optimizing control of two-stage ammonia heat pump for fast regulation of power uptake," Applied Energy, Elsevier, vol. 271(C).
    6. Østergaard, Poul Alberg & Andersen, Anders N., 2023. "Optimal heat storage in district energy plants with heat pumps and electrolysers," Energy, Elsevier, vol. 275(C).
    7. Olsen, Karen Pardos & Zong, Yi & You, Shi & Bindner, Henrik & Koivisto, Matti & Gea-Bermúdez, Juan, 2020. "Multi-timescale data-driven method identifying flexibility requirements for scenarios with high penetration of renewables," Applied Energy, Elsevier, vol. 264(C).
    8. Meesenburg, Wiebke & Ommen, Torben & Elmegaard, Brian, 2018. "Dynamic exergoeconomic analysis of a heat pump system used for ancillary services in an integrated energy system," Energy, Elsevier, vol. 152(C), pages 154-165.
    9. Lee, Zachary E. & Zhang, K. Max, 2021. "Scalable identification and control of residential heat pumps: A minimal hardware approach," Applied Energy, Elsevier, vol. 286(C).
    10. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    11. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    12. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    13. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    14. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    15. Riccardo Toffanin & Paola Caputo & Marco Belliardi & Vinicio Curti, 2022. "Low and Ultra-Low Temperature District Heating Equipped by Heat Pumps—An Analysis of the Best Operative Conditions for a Swiss Case Study," Energies, MDPI, vol. 15(9), pages 1-19, May.
    16. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    17. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Campos, José & Csontos, Csaba & Munkácsy, Béla, 2023. "Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition," Energy, Elsevier, vol. 278(PB).
    20. Golmohamadi, Hessam, 2021. "Stochastic energy optimization of residential heat pumps in uncertain electricity markets," Applied Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8664-:d:1156852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.