IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3642-d1698279.html
   My bibliography  Save this article

Nuclear Power Plants as Equivalents of Hydroelectric Reservoirs and Providers of Grid Stability: The Case of the Brazilian Electrical System

Author

Listed:
  • Ivo Leandro Dorileo

    (Interdisciplinary Center for Studies in Energy Planning (NIEPE), Campus Cuiabá, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil)

  • Welson Bassi

    (Institute of Energy and Environment (IEE), University of São Paulo (USP), São Paulo 05508-010, Brazil
    Center for Analysis, Planning and Energy Resources Development (CPLEN), University of São Paulo (USP), São Paulo 05508-010, Brazil)

  • Danilo Ferreira de Souza

    (Interdisciplinary Center for Studies in Energy Planning (NIEPE), Campus Cuiabá, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil
    Center for Analysis, Planning and Energy Resources Development (CPLEN), University of São Paulo (USP), São Paulo 05508-010, Brazil)

Abstract

In the current configuration of Brazil’s hydro-thermal-wind power system, hydroelectric reservoirs have progressively lost their long-term regulatory role due to inadequate planning, inefficient energy use, and reduced inflows. In the context of the energy transition and the incorporation of low-emission technologies into the generation mix, this study proposes expanding nuclear baseload capacity as a “regulatory thermal buffer” to mitigate hydrological uncertainty and strengthen grid stability. Using the São Francisco River basin as a case study, an equivalence factor is developed to relate nuclear energy output to stored hydropower reservoir volume. Results show that nuclear generation can help restore the multi-annual regulatory capacity of Brazil’s hydropower system and enhance the resilience of the National Interconnected System by contributing substantial inertia to an increasingly variable, renewable-based grid.

Suggested Citation

  • Ivo Leandro Dorileo & Welson Bassi & Danilo Ferreira de Souza, 2025. "Nuclear Power Plants as Equivalents of Hydroelectric Reservoirs and Providers of Grid Stability: The Case of the Brazilian Electrical System," Energies, MDPI, vol. 18(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3642-:d:1698279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    2. Jelena Stojković & Aleksandra Lekić & Predrag Stefanov, 2020. "Adaptive Control of HVDC Links for Frequency Stability Enhancement in Low-Inertia Systems," Energies, MDPI, vol. 13(23), pages 1-20, November.
    3. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
    4. Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.
    5. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Boyle, James & Littler, Timothy & Foley, Aoife M., 2024. "Coordination of synthetic inertia from wind turbines and battery energy storage systems to mitigate the impact of the synthetic inertia speed-recovery period," Renewable Energy, Elsevier, vol. 223(C).
    7. Kevin Jacqué & Lucas Koltermann & Jan Figgener & Sebastian Zurmühlen & Dirk Uwe Sauer, 2022. "The Influence of Frequency Containment Reserve on the Operational Data and the State of Health of the Hybrid Stationary Large-Scale Storage System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    8. Marcelo Coelho & Cristovão Vicente Scapulatempo Fernandes & Daniel Henrique Marco Detzel, 2019. "Uncertainty analysis in the detection of trends, cycles, and shifts in water resources time series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2629-2644, June.
    9. Gergo Varhegyi & Mutasim Nour, 2024. "Advancing Fast Frequency Response Ancillary Services in Renewable-Heavy Grids: A Global Review of Energy Storage-Based Solutions and Market Dynamics," Energies, MDPI, vol. 17(15), pages 1-29, July.
    10. Aiden Peakman & Bruno Merk & Kevin Hesketh, 2020. "The Potential of Pressurised Water Reactors to Provide Flexible Response in Future Electricity Grids," Energies, MDPI, vol. 13(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    2. Christos Agathokleous & Jimmy Ehnberg, 2020. "A Quantitative Study on the Requirement for Additional Inertia in the European Power System until 2050 and the Potential Role of Wind Power," Energies, MDPI, vol. 13(9), pages 1-14, May.
    3. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Mohamed Hadri & Vincenzo Trovato & Agnes Bialecki & Bruno Merk & Aiden Peakman, 2021. "Assessment of High-Electrification UK Scenarios with Varying Levels of Nuclear Power and Associated Post-Fault Behaviour," Energies, MDPI, vol. 14(6), pages 1-23, March.
    5. Yohan Jang & Zhuoya Sun & Sanghyuk Ji & Chaeeun Lee & Daeung Jeong & Seunghoon Choung & Sungwoo Bae, 2021. "Grid-Connected Inverter for a PV-Powered Electric Vehicle Charging Station to Enhance the Stability of a Microgrid," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    6. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
    7. Tina, Giuseppe Marco & Aneli, Stefano & Gagliano, Antonio, 2022. "Technical and economic analysis of the provision of ancillary services through the flexibility of HVAC system in shopping centers," Energy, Elsevier, vol. 258(C).
    8. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    9. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
    10. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    11. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    12. Mahmoud Elshenawy & Ashraf Fahmy & Adel Elsamahy & Shaimaa A. Kandil & Helmy M. El Zoghby, 2022. "Optimal Power Management of Interconnected Microgrids Using Virtual Inertia Control Technique," Energies, MDPI, vol. 15(19), pages 1-30, September.
    13. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    14. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    16. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).
    17. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    18. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    19. Giorgio M. Giannuzzi & Viktoriya Mostova & Cosimo Pisani & Salvatore Tessitore & Alfredo Vaccaro, 2022. "Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators," Energies, MDPI, vol. 15(21), pages 1-13, October.
    20. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3642-:d:1698279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.