IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4728-d1742726.html
   My bibliography  Save this article

A Coordinated Neuro-Fuzzy Control System for Hybrid Energy Storage Integration: Virtual Inertia and Frequency Support in Low-Inertia Power Systems

Author

Listed:
  • Carlos H. Inga Espinoza

    (National University of Engineering, Lima 15333, Peru)

  • Modesto T. Palma

    (National University of Engineering, Lima 15333, Peru)

Abstract

Energy policies and economies of scale have promoted the expansion of renewable energy sources, leading to the displacement of conventional generation units and a consequent reduction in system inertia. Low inertia amplifies frequency deviations in response to generation–load imbalances, increasing the risk of load shedding and service interruptions. To address this issue, this paper proposes a coordinated control strategy based on neuro-fuzzy networks, applied to a hybrid energy storage system (HESS) composed of batteries and supercapacitors. The controller is designed to simultaneously emulate virtual inertia and implement virtual droop control, thereby improving frequency stability and reducing reliance on spinning reserve. Additionally, a state-of-charge (SOC) management layer is integrated to prevent battery operation in critical zones, mitigating degradation and extending battery lifespan. The neuro-fuzzy controller dynamically coordinates the power exchange both among the energy storage technologies (batteries and supercapacitors) and between the HESS and the conventional generation unit, enabling a smooth and efficient transition in response to power imbalances. The proposed strategy was validated through simulations in MATLAB R2022b using a two-area power system model with parameters sourced from the literature and validated references. System performance was evaluated using standard frequency response metrics, including performance indicators (ITSE, ISE, ITAE and IAE) and the frequency nadir, demonstrating the effectiveness of the approach in enhancing frequency regulation and ensuring the operational safety of the energy storage system.

Suggested Citation

  • Carlos H. Inga Espinoza & Modesto T. Palma, 2025. "A Coordinated Neuro-Fuzzy Control System for Hybrid Energy Storage Integration: Virtual Inertia and Frequency Support in Low-Inertia Power Systems," Energies, MDPI, vol. 18(17), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4728-:d:1742726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valentin Silvera Diaz & Daniel Augusto Cantane & André Quites Ordovás Santos & Oswaldo Hideo Ando Junior, 2021. "Comparative Analysis of Degradation Assessment of Battery Energy Storage Systems in PV Smoothing Application," Energies, MDPI, vol. 14(12), pages 1-16, June.
    2. Chenxuan Xu & Weiqiang Qiu & Linjun Si & Tianhan Zhang & Jun Li & Gang Chen & Hongfei Yu & Jiaqi Lu & Zhenzhi Lin, 2023. "Economic Analysis of Li-Ion Battery–Supercapacitor Hybrid Energy Storage System Considering Multitype Frequency Response Benefits in Power Systems," Energies, MDPI, vol. 16(18), pages 1-21, September.
    3. Thien-An Nguyen-Huu & Van Thang Nguyen & Kyeon Hur & Jae Woong Shim, 2020. "Coordinated Control of a Hybrid Energy Storage System for Improving the Capability of Frequency Regulation and State-of-Charge Management," Energies, MDPI, vol. 13(23), pages 1-21, November.
    4. Gergo Varhegyi & Mutasim Nour, 2024. "Advancing Fast Frequency Response Ancillary Services in Renewable-Heavy Grids: A Global Review of Energy Storage-Based Solutions and Market Dynamics," Energies, MDPI, vol. 17(15), pages 1-29, July.
    5. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    7. Weiwei Shan & Michael Schwalm & Martin Shan, 2024. "A Design Tool for Battery/Supercapacitor Hybrid Energy Storage Systems Based on the Physical–Electrochemical Degradation Battery Model BaSiS," Energies, MDPI, vol. 17(14), pages 1-24, July.
    8. Wei Chen & Na Sun & Zhicheng Ma & Wenfei Liu & Haiying Dong, 2023. "A Two-Layer Optimization Strategy for Battery Energy Storage Systems to Achieve Primary Frequency Regulation of Power Grid," Energies, MDPI, vol. 16(6), pages 1-18, March.
    9. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    10. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    11. Md Ruhul Amin & Michael Negnevitsky & Evan Franklin & Kazi Saiful Alam & Seyed Behzad Naderi, 2021. "Application of Battery Energy Storage Systems for Primary Frequency Control in Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 14(5), pages 1-22, March.
    12. Woo Yeong Choi & Kyung Soo Kook & Ga Ram Yu, 2019. "Control Strategy of BESS for Providing Both Virtual Inertia and Primary Frequency Response in the Korean Power System," Energies, MDPI, vol. 12(21), pages 1-17, October.
    13. Hao Chen & Chenhui Sha & Mingqing Jiao & Changbin Shao & Shang Gao & Hualong Yu & Bin Qin, 2025. "DIA-TSK: A Dynamic Incremental Adaptive Takagi–Sugeno–Kang Fuzzy Classifier," Mathematics, MDPI, vol. 13(7), pages 1-31, March.
    14. Xiaoyu Deng & Ruo Mo & Pengliang Wang & Junru Chen & Dongliang Nan & Muyang Liu, 2023. "Review of RoCoF Estimation Techniques for Low-Inertia Power Systems," Energies, MDPI, vol. 16(9), pages 1-19, April.
    15. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    16. Sanath Alahakoon & Rajib Baran Roy & Shantha Jayasinghe Arachchillage, 2023. "Optimizing Load Frequency Control in Standalone Marine Microgrids Using Meta-Heuristic Techniques," Energies, MDPI, vol. 16(13), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    2. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    4. Tae-Hwan Jin & Ki-Yeol Shin & Mo Chung & Geon-Pyo Lim, 2022. "Development and Performance Verification of Frequency Control Algorithm and Hardware Controller Using Real-Time Cyber Physical System Simulator," Energies, MDPI, vol. 15(15), pages 1-24, August.
    5. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    6. Mehmet C. Yagci & Thomas Feldmann & Elmar Bollin & Michael Schmidt & Wolfgang G. Bessler, 2022. "Aging Characteristics of Stationary Lithium-Ion Battery Systems with Serial and Parallel Cell Configurations," Energies, MDPI, vol. 15(11), pages 1-19, May.
    7. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    8. Efstathios E. Michaelides, 2025. "Energy Efficiency and the Transition to Renewables—Building Communities of the Future," Energies, MDPI, vol. 18(7), pages 1-16, April.
    9. Zhao, Teyang & Liu, Hui & Su, Jinshuo & Wang, Ni & Luo, Zhiqiang, 2025. "Coordinated control for distributed energy resources in Islanded microgrids with improved frequency regulation capability," Renewable Energy, Elsevier, vol. 244(C).
    10. Ashish Shrestha & Bishal Ghimire & Francisco Gonzalez-Longatt, 2021. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System," Energies, MDPI, vol. 14(11), pages 1-15, June.
    11. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    12. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    13. Kun Wang & Lefeng Cheng & Meng Yin & Kuozhen Zhang & Ruikun Wang & Mengya Zhang & Runbao Sun, 2025. "Evolutionary Game Theory in Energy Storage Systems: A Systematic Review of Collaborative Decision-Making, Operational Strategies, and Coordination Mechanisms for Renewable Energy Integration," Sustainability, MDPI, vol. 17(16), pages 1-153, August.
    14. Yuan Cao & Long Chen & Chunsheng Wang, 2025. "Coordinated Thermal and Electrical Balancing for Lithium-Ion Cells," Energies, MDPI, vol. 18(16), pages 1-15, August.
    15. Pin-Han Chen & Cheng-Han Lee & Jun-Yi Wu & Wei-Sheng Chen, 2023. "Perspectives on Taiwan’s Pathway to Net-Zero Emissions," Sustainability, MDPI, vol. 15(6), pages 1-11, March.
    16. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    17. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    18. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    19. Yavari, Mohammad & Bohreghi, Iman Mohammadi, 2025. "Developing a green-resilient power network and supply chain: Integrating renewable and traditional energy sources in the face of disruptions," Applied Energy, Elsevier, vol. 377(PC).
    20. Michael Schwalm & Tatjana Dabrowski, 2024. "Directly Interconnected High-Energy and High-Power Battery Packs," Energies, MDPI, vol. 17(24), pages 1-16, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4728-:d:1742726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.