IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003520.html
   My bibliography  Save this article

Coordinated control for distributed energy resources in Islanded microgrids with improved frequency regulation capability

Author

Listed:
  • Zhao, Teyang
  • Liu, Hui
  • Su, Jinshuo
  • Wang, Ni
  • Luo, Zhiqiang

Abstract

With the increasing prevalence of renewable energies in islanded microgrids, wind turbine generators are becoming one of the main resources that provide frequency ancillary services by rapid and significant active power increments. Nevertheless, the substantial power increment will inevitably lead to a significant secondary frequency dip for the rotor speed restoration period and frequency overshoot for minor disturbances. This paper proposes an improved deloaded scheme to avoid the secondary frequency dip by increasing the frequency regulation reserve, which can also reduce the pitch angle adjustments. In the deloaded mode, based on the quantified frequency regulation reserve and operational limitations of wind turbine generators, an active power enhancement strategy is proposed to improve the frequency nadir by enhancing the active power contribution. The stable operation of the wind turbine generator can be ensured by varying the active power with the rotor speed. Moreover, to eliminate the frequency overshoot and improve the frequency response, a switching-based coordinated control strategy is proposed to flexibly regulate the active power outputs for wind turbine generators and distributed energy resources by switching different control strategies according to the frequency deviation. Finally, simulation results on an islanded microgrid validate the effectiveness of the proposed strategies. For instance, compared with active power reserve control, the proposed switching-based coordinated control can reduce the maximum frequency deviation by 32.2 % and 14.5 % in large load increase and decrease scenarios, respectively.

Suggested Citation

  • Zhao, Teyang & Liu, Hui & Su, Jinshuo & Wang, Ni & Luo, Zhiqiang, 2025. "Coordinated control for distributed energy resources in Islanded microgrids with improved frequency regulation capability," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003520
    DOI: 10.1016/j.renene.2025.122690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.