IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002385.html
   My bibliography  Save this article

Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options

Author

Listed:
  • Homan, Samuel
  • Mac Dowell, Niall
  • Brown, Solomon

Abstract

Electricity grids across the world are rapidly changing to accommodate an increasing penetration of renewable generation, but concerns have been raised about the stability of grids during and after this transition. The volatility of the frequency of the grid is a commonly used metric for stability. Here we analyse historic frequency data from Great Britain to gain an understanding of the past and current state of frequency volatility and some of the driving forces behind patterns and trends. We show that frequency volatility increased appreciably in 2017 and 2018. Using predicted 2030 inertia profiles, we also determine the future frequency response requirements of the grid in two different situations: after a large infeed loss and during normal day-to-day operation. In normal day-to-day operation, the frequency volatility does not drastically deteriorate until an inertia level around 20% of current levels (inertia from nuclear and demand only). At this low level, a significant portion of the frequency response capacity needs to be fast acting for successful mitigation. Increasing the capacity of slow acting response alone is actually found to be detrimental. Low inertia has a much greater effect on frequency response requirements in a large infeed loss situation.

Suggested Citation

  • Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002385
    DOI: 10.1016/j.apenergy.2021.116723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    2. Greenwood, D.M. & Lim, K.Y. & Patsios, C. & Lyons, P.F. & Lim, Y.S. & Taylor, P.C., 2017. "Frequency response services designed for energy storage," Applied Energy, Elsevier, vol. 203(C), pages 115-127.
    3. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    4. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
    5. Lee, Rachel & Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2019. "A closed-loop analysis of grid scale battery systems providing frequency response and reserve services in a variable inertia grid," Applied Energy, Elsevier, vol. 236(C), pages 961-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhihao & Yang, Lun & Xu, Yinliang, 2023. "A dynamics-constrained method for distributed frequency regulation in low-inertia power systems," Applied Energy, Elsevier, vol. 344(C).
    2. Wang, Xiaobo & Huang, Wentao & Li, Ran & Tai, Nengling & Zong, Ming, 2023. "Frequency-based demand side response considering the discontinuity of the ToU tariff," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    2. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    3. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).
    4. Engels, Jonas & Claessens, Bert & Deconinck, Geert, 2019. "Techno-economic analysis and optimal control of battery storage for frequency control services, applied to the German market," Applied Energy, Elsevier, vol. 242(C), pages 1036-1049.
    5. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
    6. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    7. Henning Thiesen & Clemens Jauch, 2021. "Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes," Energies, MDPI, vol. 14(5), pages 1-19, February.
    8. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    9. Mohamed Hadri & Vincenzo Trovato & Agnes Bialecki & Bruno Merk & Aiden Peakman, 2021. "Assessment of High-Electrification UK Scenarios with Varying Levels of Nuclear Power and Associated Post-Fault Behaviour," Energies, MDPI, vol. 14(6), pages 1-23, March.
    10. Fernández-Muñoz, Daniel & Pérez-Díaz, Juan I. & Guisández, Ignacio & Chazarra, Manuel & Fernández-Espina, Álvaro, 2020. "Fast frequency control ancillary services: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Yohan Jang & Zhuoya Sun & Sanghyuk Ji & Chaeeun Lee & Daeung Jeong & Seunghoon Choung & Sungwoo Bae, 2021. "Grid-Connected Inverter for a PV-Powered Electric Vehicle Charging Station to Enhance the Stability of a Microgrid," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    12. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
    13. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Mehigan, L. & Al Kez, Dlzar & Collins, Seán & Foley, Aoife & Ó’Gallachóir, Brian & Deane, Paul, 2020. "Renewables in the European power system and the impact on system rotational inertia," Energy, Elsevier, vol. 203(C).
    15. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    16. Fabietti, Luca & Qureshi, Faran A. & Gorecki, Tomasz T. & Salzmann, Christophe & Jones, Colin N., 2018. "Multi-time scale coordination of complementary resources for the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1164-1180.
    17. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    18. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    20. Daniele Linaro & Federico Bizzarri & Davide Giudice & Cosimo Pisani & Giorgio M. Giannuzzi & Samuele Grillo & Angelo M. Brambilla, 2023. "Continuous estimation of power system inertia using convolutional neural networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.