IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2985-d1672487.html
   My bibliography  Save this article

Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology

Author

Listed:
  • Mohamad A. Nahil

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Omar Aboelazayem

    (School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK)

  • Scott Wiseman

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Neel Herar

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Valerie Dupont

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Ali Alazzawi

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Alison S. Tomlin

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Andrew B. Ross

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

Abstract

In this study, a response surface methodology (RSM) using a central composite design (CCD) was implemented to investigate the influence of process variables on ethyl levulinate (EL) production from the ethanolysis of waste corn cob samples, using sulphuric acid as a catalyst. The effects of four independent variables, namely, the temperature (A), the corn cob content (B), corn cob/H 2 SO 4 mass ratio (C) and the reaction time (D) on the yields of EL (Y 1 ), diethyl ether (DEE) (Y 2 ) and solid residue (Y 3 ) were explored. Using multiple regression analysis, the experimental results were fitted to quadratic polynomial models. The predicted yields based on the fitted models were well within the experimental uncertainties. Optimum conditions for maximising the EL yield were found to be 176 °C, 14.6 wt. %, 21:1 and 6.75 h for A to D, respectively. A moderate-to-high EL yield (29.2%) from corn cob was achieved in optimised conditions, a result comparable to those obtained from model C 6 carbohydrate compounds. Side products were also produced, including diethyl ether, furfural, levulinic acid, 5-hydroxymethyl furfural, ethyl acetate, ethyl formate and water. Total unknown losses of only 5.69% were reported after material balancing. The results suggest that lignocellulosic waste such as corn cob can be used as a potential feedstock for the production of ethyl levulinate by direct acid-catalysed ethanolysis, but that the treatment of side products will need to be considered.

Suggested Citation

  • Mohamad A. Nahil & Omar Aboelazayem & Scott Wiseman & Neel Herar & Valerie Dupont & Ali Alazzawi & Alison S. Tomlin & Andrew B. Ross, 2025. "Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology," Energies, MDPI, vol. 18(11), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2985-:d:1672487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holzleitner, Marie & Moser, Simon & Puschnigg, Stefan, 2020. "Evaluation of the impact of the new Renewable Energy Directive 2018/2001 on third-party access to district heating networks to enforce the feed-in of industrial waste heat," Utilities Policy, Elsevier, vol. 66(C).
    2. Daniel Chernick & Valerie Dupont & Andrew B. Ross, 2025. "The Potential to Produce Bio-Based Ammonia Adsorbents from Lignin-Rich Residues," Clean Technol., MDPI, vol. 7(2), pages 1-24, April.
    3. Peng, Lincai & Lin, Lu & Li, Hui & Yang, Qiulin, 2011. "Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts," Applied Energy, Elsevier, vol. 88(12), pages 4590-4596.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oprescu, Elena-Emilia & Enascuta, Cristina-Emanuela & Doukeh, Rami & Calin, Catalina & Lavric, Vasile, 2021. "Characterizing and using a new bi-functional catalyst to sustainably synthesize methyl levulinate from biomass carbohydrates," Renewable Energy, Elsevier, vol. 176(C), pages 651-662.
    2. Billerbeck, Anna & Breitschopf, Barbara & Winkler, Jenny & Bürger, Veit & Köhler, Benjamin & Bacquet, Alexandre & Popovski, Eftim & Fallahnejad, Mostafa & Kranzl, Lukas & Ragwitz, Mario, 2023. "Policy frameworks for district heating: A comprehensive overview and analysis of regulations and support measures across Europe," Energy Policy, Elsevier, vol. 173(C).
    3. Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
    4. Liu, Jie & Wang, Xue-Qian & Yang, Bei-Bei & Liu, Chun-Ling & Xu, Chun-Li & Dong, Wen-Sheng, 2018. "Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite," Renewable Energy, Elsevier, vol. 120(C), pages 231-240.
    5. Pan, Hu & Liu, Xiaofang & Zhang, Heng & Yang, Kaili & Huang, Shan & Yang, Song, 2017. "Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion," Renewable Energy, Elsevier, vol. 107(C), pages 245-252.
    6. Skvorčinskienė, R. & Striūgas, N. & Galinis, A. & Lekavičius, V. & Kurkela, E. & Kurkela, M. & Lukoševičius, R. & Radinas, M. & Šermukšnienė, A., 2022. "Renewable transport fuel production combined with cogeneration plant operation and waste heat recovery in district heating system," Renewable Energy, Elsevier, vol. 189(C), pages 952-969.
    7. Veseli, Argjenta & Moser, Simon & Kubeczko, Klaus & Madner, Verena & Wang, Anna & Wolfsgruber, Klaus, 2021. "Practical necessity and legal options for introducing energy regulatory sandboxes in Austria," Utilities Policy, Elsevier, vol. 73(C).
    8. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    9. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    11. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    12. Aslanlı, İlkin & Sert, Murat, 2025. "One pot conversion of fructose to alkyl levulinates catalyzed by deep eutectic solvents in microwave reactor," Renewable Energy, Elsevier, vol. 244(C).
    13. Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
    14. Zhao, Weijie & Li, Yingwen & Song, Changhua & Liu, Sijie & Li, Xuehui & Long, Jinxing, 2017. "Intensified levulinic acid/ester production from cassava by one-pot cascade prehydrolysis and delignification," Applied Energy, Elsevier, vol. 204(C), pages 1094-1100.
    15. Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.
    16. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    17. Siddique, Muhammad Bilal & Nielsen, Per Sieverts & Rosendal, Mathias Berg & Jensen, Ida Græsted & Keles, Dogan, 2023. "Impacts of earlier natural gas phase-out & heat-saving policies on district heating and the energy system," Energy Policy, Elsevier, vol. 174(C).
    18. Feng, Junfeng & Jiang, Jianchun & Xu, Junming & Yang, Zhongzhi & Wang, Kui & Guan, Qian & Chen, Shuigen, 2015. "Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass," Applied Energy, Elsevier, vol. 154(C), pages 520-527.
    19. Simon Moser & Gabriela Jauschnik, 2023. "Using Industrial Waste Heat in District Heating: Insights on Effective Project Initiation and Business Models," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    20. Tang, Xing & Zeng, Xianhai & Li, Zheng & Hu, Lei & Sun, Yong & Liu, Shijie & Lei, Tingzhou & Lin, Lu, 2014. "Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 608-620.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2985-:d:1672487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.