IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp520-527.html
   My bibliography  Save this article

Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass

Author

Listed:
  • Feng, Junfeng
  • Jiang, Jianchun
  • Xu, Junming
  • Yang, Zhongzhi
  • Wang, Kui
  • Guan, Qian
  • Chen, Shuigen

Abstract

One-step preparation of methyl levulinate from biomass was investigated. The process used was direct liquefaction under pressure in methanol using a 1L autoclave. Bamboo, a lignocellulosic biomass, was liquefied using sulfuric acid in subcritical methanol. When sulfuric acid was used as the catalyst, a 30.75wt% methyl levulinate yield could be obtained from bamboo at 200°C after a reaction time of 120min when the catalyst loading was 2.5wt% per 60g bamboo. In addition, microcrystalline cellulose, corn starch, methyl glucoside and glucose were selected as model compounds for the liquefaction reaction so that the biomass to methyl levulinate reaction pathway could be investigated. The results suggested that lignocellulosic biomass is a renewable material that can be used to produce a high value-added fuel additive (methyl levulinate) by the direct liquefaction under pressure reaction process.

Suggested Citation

  • Feng, Junfeng & Jiang, Jianchun & Xu, Junming & Yang, Zhongzhi & Wang, Kui & Guan, Qian & Chen, Shuigen, 2015. "Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass," Applied Energy, Elsevier, vol. 154(C), pages 520-527.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:520-527
    DOI: 10.1016/j.apenergy.2015.04.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    2. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    3. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    4. Li, Yan & Zhang, Xiao-Dong & Sun, Li & Zhang, Jie & Xu, Hai-Peng, 2010. "Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst /ZrO2-TiO2/La3+," Applied Energy, Elsevier, vol. 87(1), pages 156-159, January.
    5. Peng, Lincai & Lin, Lu & Li, Hui & Yang, Qiulin, 2011. "Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts," Applied Energy, Elsevier, vol. 88(12), pages 4590-4596.
    6. Yin, Sudong & Tan, Zhongchao, 2012. "Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions," Applied Energy, Elsevier, vol. 92(C), pages 234-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Weijie & Li, Yingwen & Song, Changhua & Liu, Sijie & Li, Xuehui & Long, Jinxing, 2017. "Intensified levulinic acid/ester production from cassava by one-pot cascade prehydrolysis and delignification," Applied Energy, Elsevier, vol. 204(C), pages 1094-1100.
    2. di Bitonto, Luigi & Locaputo, Vito & D'Ambrosio, Valeria & Pastore, Carlo, 2020. "Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels," Applied Energy, Elsevier, vol. 259(C).
    3. Samanta, Ritika & Chakraborty, Rajat, 2023. "Methyl levulinate synthesis from rice husk employing e-waste derived silica supported nano CuO–CdSO4 photocatalyst: Assessment of production environmental impacts, engine performance and emissions," Renewable Energy, Elsevier, vol. 210(C), pages 842-858.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Lincai & Lin, Lu & Li, Hui & Yang, Qiulin, 2011. "Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts," Applied Energy, Elsevier, vol. 88(12), pages 4590-4596.
    2. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    3. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    4. Zhu, Zhe & Rosendahl, Lasse & Toor, Saqib Sohail & Yu, Donghong & Chen, Guanyi, 2015. "Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation," Applied Energy, Elsevier, vol. 137(C), pages 183-192.
    5. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    6. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    7. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    8. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    9. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    10. Giuseppe Di Vito Nolfi & Katia Gallucci & Leucio Rossi, 2021. "Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    11. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    12. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    13. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    15. Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
    16. Mohammadi, Maedeh & Najafpour, Ghasem D. & Younesi, Habibollah & Lahijani, Pooya & Uzir, Mohamad Hekarl & Mohamed, Abdul Rahman, 2011. "Bioconversion of synthesis gas to second generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4255-4273.
    17. Faba, Laura & Díaz, Eva & Ordóñez, Salvador, 2015. "Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 273-287.
    18. Kumar, Dinesh & Pant, Kamal K., 2016. "Insitu upgradation of biocrude vapor generated from non-edible oil cake's hydrothermal conversion over aluminated mesoporous catalysts," Renewable Energy, Elsevier, vol. 95(C), pages 43-52.
    19. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    20. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:520-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.