IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2697-d1662293.html
   My bibliography  Save this article

Two-Stage Optimization Strategy for Market-Oriented Lease of Shared Energy Storage in Wind Farm Clusters

Author

Listed:
  • Junlei Liu

    (Guangdong Power Grid Co., Ltd., Guangzhou 510600, China)

  • Jiekang Wu

    (School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Zhen Lei

    (School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract

Diversified application scenarios and business models are effective ways to improve the utilization and economic benefits of energy storage systems. In response to the current problems of single application scenarios, high idle rates, and imperfect price formation mechanisms faced by energy storage on the power generation side, a robust two-stage optimization operation strategy for shared energy storage is proposed, taking into account leasing demand and multiple uncertainties, from the perspective of the sharing concept. A multi-scenario application framework for shared energy storage is established to provide leasing services for wind farm clusters, as well as auxiliary services for participating in the electric energy markets and frequency regulation markets, and the participation sequence is streamlined. Based on the operating and opportunity costs of shared energy storage, a pricing mechanism for leasing services is designed to explore the driving forces of wind farm clusters participating in leasing services from the perspective of cost assessment. Considering the uncertainty of wind power output and market electric prices, as well as the market operational characteristics, an optimized operation model for shared energy storage in the day-ahead and real-time stages is constructed. In the day-ahead stage, a Stackelberg game model is introduced to depict the energy sharing between wind farm clusters and shared energy storage, forming leasing prices, leasing capacities, and energy storage pre-scheduling plans at different time periods. In the real-time stage, the real-time prediction results of wind power output and electric prices are integrated with scheduling decisions, and an improved robust optimization model is used to dynamically regulate the pre-scheduling plan for leasing capacity and shared energy storage. Based on actual data from the electricity market in Guangdong Province, effectiveness verification is conducted, and the results showed that diversified application scenarios improve the utilization rate of shared energy storage in the power generation side by 52.87%, increasing economic benefits by CNY 188,700. The proposed optimized operation strategy has high engineering application value.

Suggested Citation

  • Junlei Liu & Jiekang Wu & Zhen Lei, 2025. "Two-Stage Optimization Strategy for Market-Oriented Lease of Shared Energy Storage in Wind Farm Clusters," Energies, MDPI, vol. 18(11), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2697-:d:1662293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2697/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2697-:d:1662293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.