IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002721.html
   My bibliography  Save this article

Stochastic optimization of energy systems configuration for nearly-zero energy buildings considering load uncertainties

Author

Listed:
  • Xue, Qingwen
  • Wang, Ao
  • Jiang, Sihang
  • Wang, Zhichao
  • Yang, Yingxia
  • Cheng, Yuanda
  • Zheng, Zhonghai

Abstract

The energy systems configuration in nearly-zero energy buildings (NZEBs) has traditionally been optimized under deterministic conditions. However, building energy load often exhibiteds uncertainties in practice, influenced by factors such as occupant behavior and weather conditions. These uncertainties may lead to suboptimal solutions of capacity configuration or failure in achieving building design targets. This study introduces an stochastic optimization method for energy systems configuration that accounts for load uncertainties. The process begins with the characterization of uncertain parameters, followed by the construction of a scenario set, and concludes with the multi-objective optimization within a 70%–90% load guarantee. The NSGA-II, coupled with entropy weight-TOPSIS method, was utilized to formulate and solve the multi-objective optimization problem. This approach was then compared with results obtained under deterministic and robust conditions based on load guarantee rate, cost, and carbon emissions. The results show that the most optimal solution was obtained by the stochastic optimization with a load guarantee rate of 90%, which decreases equipment investment by 58.61% and carbon emissions by 15.8 %, and increases load guarantee rate by 133.69% compared to the initial design. These results underscore the significant effectiveness of incorporating load uncertainties in designing robust and flexible energy systems in NZEBs.

Suggested Citation

  • Xue, Qingwen & Wang, Ao & Jiang, Sihang & Wang, Zhichao & Yang, Yingxia & Cheng, Yuanda & Zheng, Zhonghai, 2025. "Stochastic optimization of energy systems configuration for nearly-zero energy buildings considering load uncertainties," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002721
    DOI: 10.1016/j.renene.2025.122610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    2. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    3. Xue, Kai & Wang, Jinshi & Zhang, Shuo & Ou, Kejie & Chen, Weixiong & Zhao, Quanbin & Hu, Guangtao & Sun, Zhiyong, 2024. "Design optimization of community energy systems based on dual uncertainties of meteorology and load for robustness improvement," Renewable Energy, Elsevier, vol. 232(C).
    4. Fan, Yukun & Liu, Weifeng & Zhu, Feilin & Wang, Sen & Yue, Hao & Zeng, Yurou & Xu, Bin & Zhong, Ping-an, 2024. "Short-term stochastic multi-objective optimization scheduling of wind-solar-hydro hybrid system considering source-load uncertainties," Applied Energy, Elsevier, vol. 372(C).
    5. Lin, Q.G. & Huang, G.H., 2010. "An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level," Energy, Elsevier, vol. 35(5), pages 2270-2280.
    6. Gao, Jin & Shao, Zhenguo & Chen, Feixiong & Lak, Mohammadreza, 2024. "Robust optimization for integrated energy systems based on multi-energy trading," Energy, Elsevier, vol. 308(C).
    7. Han, Huizhen & Ge, Yongkai & Wang, Qingrui & Yang, Qing & Xing, Lu & Ba, Shusong & Chen, Guoqian & Tian, Tian & Chen, Xi & Jian, Peiru, 2024. "Life cycle techno-economic-environmental optimization for capacity design and operation strategy of grid-connected building distributed multi-energy system," Renewable Energy, Elsevier, vol. 230(C).
    8. Zhong, Shangpeng & Wang, Xiaoming & Wu, Hongbin & He, Ye & Xu, Bin & Ding, Ming, 2024. "Energy hub management for integrated energy systems: A multi-objective optimization control strategy based on distributed output and energy conversion characteristics," Energy, Elsevier, vol. 306(C).
    9. Yan, Yixian & Huang, Chang & Guan, Junquan & Zhang, Qi & Cai, Yang & Wang, Weiliang, 2024. "Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach," Applied Energy, Elsevier, vol. 363(C).
    10. Li, Junhui & Yu, Zhenbo & Mu, Gang & Li, Baoju & Zhou, Jiaxu & Yan, Gangui & Zhu, Xingxu & Li, Cuiping, 2024. "An assessment methodology for the flexibility capacity of new power system based on two-stage robust optimization," Applied Energy, Elsevier, vol. 376(PB).
    11. Shamoushaki, Moein & Koh, S.C. Lenny, 2024. "Net-zero life cycle supply chain assessment of heat pump technologies," Energy, Elsevier, vol. 309(C).
    12. Wang, Longze & Mao, Yuteng & Li, Zhehan & Yi, Xinxing & Ma, Yiyi & Zhang, Yan & Li, Meicheng, 2024. "Life cycle carbon emission intensity assessment for photovoltaic greenhouses: A case study of Beijing City, China," Renewable Energy, Elsevier, vol. 230(C).
    13. Yuyang Zhao & Yifan Wei & Shuaiqi Zhang & Yingjun Guo & Hexu Sun, 2024. "Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage," Energies, MDPI, vol. 17(5), pages 1-20, February.
    14. Zhou, Yizhou & Ge, Jingyu & Li, Xiang & Zang, Haixiang & Chen, Sheng & Sun, Guoqiang & Wei, Zhinong, 2024. "Bi-level distributionally robust optimization model for low-carbon planning of integrated electricity and heat systems," Energy, Elsevier, vol. 302(C).
    15. Tan, Chee Wei & Green, Tim C. & Hernandez-Aramburo, Carlos A., 2010. "A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems," Energy, Elsevier, vol. 35(12), pages 5082-5092.
    16. Filippini, Massimo & Obrist, Adrian, 2022. "Are households living in green certified buildings consuming less energy? Evidence from Switzerland," Energy Policy, Elsevier, vol. 161(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xingnan & Lu, Hao & Zhao, Wenjun & Chen, Yuhang & Shao, Shiru, 2025. "Research on optimal scheduling and source-network-load correlation matching of integrated energy system considering uncertainty," Energy, Elsevier, vol. 321(C).
    2. Shi, Yunhong & Li, Chengjiang & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael, 2025. "A novel scheduling strategy of a hybrid wind-solar-hydro system for smoothing energy and power fluctuations," Energy, Elsevier, vol. 320(C).
    3. Tang, Haotian & Li, Rui & Song, Tongqing & Ju, Shenghong, 2025. "Short-term optimal scheduling and comprehensive assessment of hydro-photovoltaic-wind systems augmented with hybrid pumped storage hydropower plants and diversified energy storage configurations," Applied Energy, Elsevier, vol. 389(C).
    4. Yin, Boyi & Zhu, Wenjiang & Tang, Cheng & Wang, Can & Xu, Xinhai, 2025. "Hierarchical optimal scheduling of IES considering SOFC degradation, internal and external uncertainties," Applied Energy, Elsevier, vol. 381(C).
    5. Lu Xiao & Feiyue Yang & Yong Yang & Che Chen & Wuer Ha, 2024. "A Sustainable Production Planning Scheme for New Energy Vehicles in China," Sustainability, MDPI, vol. 16(19), pages 1-24, September.
    6. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    7. Shi, Shaobo & Ji, Yuehui & Zhu, Lewei & Liu, Junjie & Gao, Xiang & Chen, Hao & Gao, Qiang, 2025. "Interactive optimization of electric vehicles and park integrated energy system driven by low carbon: An incentive mechanism based on Stackelberg game," Energy, Elsevier, vol. 318(C).
    8. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    9. Yuzhe Qin & Qing Cheng, 2025. "Optimization Study of Photovoltaic Cell Arrangement Strategies in Greenhouses," Energies, MDPI, vol. 18(1), pages 1-28, January.
    10. Thet Paing Tun & Oguzhan Ceylan & Ioana Pisica, 2025. "A Real-World Case Study Towards Net Zero: EV Charger and Heat Pump Integration in End-User Residential Distribution Networks," Energies, MDPI, vol. 18(10), pages 1-27, May.
    11. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    12. Zhang, Lingzhi & Shi, Ruifeng & Ning, Jin & Jia, Limin & Lee, Kwang Y., 2025. "RAMS assessment methodology for road transport self-contained energy systems considering source-load dual uncertainty," Renewable Energy, Elsevier, vol. 239(C).
    13. Liang Liang & Qian Mei & Chengjiang Li, 2024. "Does “Dual Credit Policy” Really Matter in Corporate Competitiveness?," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
    14. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    15. Sun, Yantao & Guo, Yujia & Zhang, Qiang & Jia, Youwei, 2025. "Berth allocation and energy scheduling for all-electric ships in seaport microgrid: A Stackelberg game approach," Energy, Elsevier, vol. 322(C).
    16. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    17. Barbati, Maria & Greco, Salvatore & Lami, Isabella M., 2024. "The Deck-of-cards-based Ordinal Regression method and its application for the development of an ecovillage," European Journal of Operational Research, Elsevier, vol. 319(3), pages 845-861.
    18. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    19. Zhengping Liu & Wang Zhang & Hongxian Liu & Guohe Huang & Jiliang Zhen & Xin Qi, 2019. "Characterization of Renewable Energy Utilization Mode for Air-Environmental Quality Improvement through an Inexact Factorial Optimization Approach," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    20. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.