IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1132-d1346963.html
   My bibliography  Save this article

Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage

Author

Listed:
  • Yuyang Zhao

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
    Hebei Engineering Laboratory of Wind Power and Photovoltaic Coupling Hydrogen Production and Comprehensive Utilization, Shijiazhuang 050018, China)

  • Yifan Wei

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Shuaiqi Zhang

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Yingjun Guo

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
    Hebei Engineering Laboratory of Wind Power and Photovoltaic Coupling Hydrogen Production and Comprehensive Utilization, Shijiazhuang 050018, China)

  • Hexu Sun

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
    Hebei Engineering Laboratory of Wind Power and Photovoltaic Coupling Hydrogen Production and Comprehensive Utilization, Shijiazhuang 050018, China)

Abstract

A novel multi-objective robust optimization model of an integrated energy system with hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon economy operation of the integrated energy system of a park. Firstly, the lowest total system cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto front solution set of the objective function is applied by compromise planning, and the optimal solution among them is obtained by the maximum–minimum fuzzy method. Furthermore, the robust optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally, it is demonstrated that the illustrated HIES can significantly reduce the total system cost, carbon emissions, and abandoned wind and solar power. Meanwhile, the effectiveness of the proposed model and solution method is verified by analyzing the influence of multi-objective solutions and a robust coefficient on the Chongli Demonstration Project in Hebei Province.

Suggested Citation

  • Yuyang Zhao & Yifan Wei & Shuaiqi Zhang & Yingjun Guo & Hexu Sun, 2024. "Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage," Energies, MDPI, vol. 17(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1132-:d:1346963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    2. Dong, Xiangxiang & Wu, Jiang & Xu, Zhanbo & Liu, Kun & Guan, Xiaohong, 2022. "Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage," Applied Energy, Elsevier, vol. 308(C).
    3. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    4. Gan, Wei & Yan, Mingyu & Yao, Wei & Guo, Jianbo & Ai, Xiaomeng & Fang, Jiakun & Wen, Jinyu, 2021. "Decentralized computation method for robust operation of multi-area joint regional-district integrated energy systems with uncertain wind power," Applied Energy, Elsevier, vol. 298(C).
    5. Lian, Yicheng & Li, Yuanzheng & Zhao, Yong & Yu, Chaofan & Zhao, Tianyang & Wu, Lei, 2023. "Robust multi-objective optimization for islanded data center microgrid operations," Applied Energy, Elsevier, vol. 330(PB).
    6. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).
    7. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    8. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    9. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    10. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    11. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Faramarzi & Navid Ghaffarzadeh & Farhad Shahnia, 2025. "Intelligent Management of Integrated Energy Systems with a Stochastic Multi-Objective Approach with Emphasis on Demand Response, Energy Storage Devices, and Power-to-Gas," Sustainability, MDPI, vol. 17(7), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    2. Liu, Zhi-Feng & Zhao, Shi-Xiang & Luo, Xing-Fu & Huang, Ya-He & Gu, Rui-Zheng & Li, Ji-Xiang & Li, Ling-Ling, 2025. "Two-layer energy dispatching and collaborative optimization of regional integrated energy system considering stakeholders game and flexible load management," Applied Energy, Elsevier, vol. 379(C).
    3. Wu, Biao & Zhang, Shaohua & Yuan, Chenxin & Wang, Xian & Wang, Fei & Zhang, Shengqi, 2024. "Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory," Energy, Elsevier, vol. 313(C).
    4. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    5. Zare Ghaleh Seyyedi, Abbas & Akbari, Ehsan & Mahmoudi Rashid, Sara & Nejati, Seyed Ashkan & Gitizadeh, Mohsen, 2024. "Application of robust optimized spatiotemporal load management of data centers for renewable curtailment mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    6. Liu, Zhi-Feng & Luo, Xing-Fu & Chen, Xiao-Rui & Huang, Ya-He & Liu, You-Yuan & Tang, Yu & Kang, Qing & Guo, Liang, 2024. "An innovative bi-level scheduling model with hydrogen-thermal-electricity co-supply and dynamic carbon capture strategies for regional integrated energy systems considering hybrid games," Renewable Energy, Elsevier, vol. 237(PB).
    7. Matamala, Yolanda & Das, Tapas K. & Feijoo, Felipe, 2025. "A stochastic Stackelberg problem with long-term investment decisions in Power-To-X technologies for multi-energy microgrids," Energy, Elsevier, vol. 314(C).
    8. Lu, M.L. & Sun, Y.J. & Kokogiannakis, G. & Ma, Z.J., 2024. "Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    9. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    10. Li, Fei & Wang, Dong & Guo, Hengdao & Zhang, Jianhua, 2024. "Distributionally Robust Optimization for integrated energy system accounting for refinement utilization of hydrogen and ladder-type carbon trading mechanism," Applied Energy, Elsevier, vol. 367(C).
    11. Ouyang, Tiancheng & Zhang, Mingliang & Wu, Wencong & Zhao, Jiaqi & Xu, Hua, 2023. "A day-ahead planning for multi-energy system in building community," Energy, Elsevier, vol. 267(C).
    12. Kong, Feng & Zhang, Dongyue & Song, Minghao & Zhou, Xuecong & Wang, Yuwei, 2024. "Collaborative scheduling and benefit allocation for waste-to-energy, hydrogen storage, and power-to-gas under uncertainties with temporal relevance," Energy, Elsevier, vol. 307(C).
    13. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    14. Fan, Guangyao & Yu, Binbin & Sun, Bo & Li, Fan, 2024. "Multi-time-space scale optimization for a hydrogen-based regional multi-energy system," Applied Energy, Elsevier, vol. 371(C).
    15. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Zhao, Yi, 2022. "Research on a cross-regional robust trading strategy based on multiple market mechanisms," Energy, Elsevier, vol. 261(PB).
    16. Khaligh, Vahid & Ghezelbash, Azam & Mazidi, Mohammadreza & Liu, Jay & Ryu, Jun-Hyung, 2023. "P-robust energy management of a multi-energy microgrid enabled with energy conversions under various uncertainties," Energy, Elsevier, vol. 271(C).
    17. Lei Su & Wenxiang Wu & Wanli Feng & Junda Qin & Yuqi Ao, 2024. "Collaborative Planning of Distribution Network, Data Centres and Renewable Energy in the Power Distribution IoT via Interval Optimization," Energies, MDPI, vol. 17(15), pages 1-26, July.
    18. Du, Yida & Li, Xiangguang & Tan, Caixia & Tan, Zhongfu, 2024. "Two-stage multi-objective distributionally robust operation optimization and benefits equalization of an off-grid type electric-hydrogen-ammonia-methanol coupling system," Renewable Energy, Elsevier, vol. 236(C).
    19. Huang, Z.F. & Chen, W.D. & Wan, Y.D. & Shao, Y.L. & Islam, M.R. & Chua, K.J., 2024. "Techno-economic comparison of different energy storage configurations for renewable energy combined cooling heating and power system," Applied Energy, Elsevier, vol. 356(C).
    20. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1132-:d:1346963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.