IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2666-d1661162.html
   My bibliography  Save this article

Networked Multi-Agent Deep Reinforcement Learning Framework for the Provision of Ancillary Services in Hybrid Power Plants

Author

Listed:
  • Muhammad Ikram

    (School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia)

  • Daryoush Habibi

    (School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia)

  • Asma Aziz

    (School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia)

Abstract

Inverter-based resources (IBRs) are becoming more prominent due to the increasing penetration of renewable energy sources that reduce power system inertia, compromising power system stability and grid support services. At present, optimal coordination among generation technologies remains a significant challenge for frequency control services. This paper presents a novel networked multi-agent deep reinforcement learning (N—MADRL) scheme for optimal dispatch and frequency control services. First, we develop a model-free environment consisting of a photovoltaic (PV) plant, a wind plant (WP), and an energy storage system (ESS) plant. The proposed framework uses a combination of multi-agent actor-critic (MAAC) and soft actor-critic (SAC) schemes for optimal dispatch of active power, mitigating frequency deviations, aiding reserve capacity management, and improving energy balancing. Second, frequency stability and optimal dispatch are formulated in the N—MADRL framework using the physical constraints under a dynamic simulation environment. Third, a decentralised coordinated control scheme is implemented in the HPP environment using communication-resilient scenarios to address system vulnerabilities. Finally, the practicality of the N—MADRL approach is demonstrated in a Grid2Op dynamic simulation environment for optimal dispatch, energy reserve management, and frequency control. Results demonstrated on the IEEE 14 bus network show that compared to PPO and DDPG, N—MADRL achieves 42.10% and 61.40% higher efficiency for optimal dispatch, along with improvements of 68.30% and 74.48% in mitigating frequency deviations, respectively. The proposed approach outperforms existing methods under partially, fully, and randomly connected scenarios by effectively handling uncertainties, system intermittency, and communication resiliency.

Suggested Citation

  • Muhammad Ikram & Daryoush Habibi & Asma Aziz, 2025. "Networked Multi-Agent Deep Reinforcement Learning Framework for the Provision of Ancillary Services in Hybrid Power Plants," Energies, MDPI, vol. 18(10), pages 1-34, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2666-:d:1661162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2666/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2666-:d:1661162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.