IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2192-d1388018.html
   My bibliography  Save this article

Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis

Author

Listed:
  • Attaso Khamwichit

    (Department of Chemical Engineering, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand
    Biomass and Oil Palm Research Centre of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand)

  • Jannisa Kasawapat

    (Biomass and Oil Palm Research Centre of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand
    Engineering Graduate Program, Walailak University, Nakhon Si Thammarat 80160, Thailand)

  • Narongsak Seekao

    (Faculty of Industrial Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80000, Thailand)

  • Wipawee Dechapanya

    (Department of Chemical Engineering, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand
    Biomass and Oil Palm Research Centre of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand)

Abstract

Energy production from coal combustion is responsible for nearly 40% of global CO 2 emissions including SO x and NO x . This study aims to produce solid biomass fuels from oil-palm residues by torrefaction, having a high heating value (HHV) equivalent to fossil coals. The experiments were designed using Design Expert version 13 software to optimize the conditions affecting the fuel characteristics of the torrefied products. The statistical analysis suggested that the optimal conditions to achieve a high HHV and fixed carbon content while retaining the mass yield of biomass mainly depended on the temperature and torrefying time, while the size played a less important role in affecting the properties. The optimal conditions were observed to be at 283 °C (120 min) for EFBs, 301 °C (111 min) for PF, and 285 °C (120 min) for PKSs. The maximum HHV of 5229, 5969, and 5265 kcal/kg were achieved for the torrefied EFBs, PF, and PKSs, respectively. The energy efficiency of torrefied biomass was increased to 1.25–1.35. Ecoefficiency analysis suggested that torrefaction should be carried out at high temperatures with a short torrefying time. This low-cost bio-circular torrefied biomass showed promising fuel characteristics that could be potentially used as an alternative to coals.

Suggested Citation

  • Attaso Khamwichit & Jannisa Kasawapat & Narongsak Seekao & Wipawee Dechapanya, 2024. "Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis," Energies, MDPI, vol. 17(9), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2192-:d:1388018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maja Ivanovski & Darko Goričanec & Danijela Urbancl, 2023. "The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes," Energies, MDPI, vol. 16(9), pages 1-15, April.
    2. Mišík, Matúš & Nosko, Andrej, 2023. "Post-pandemic lessons for EU energy and climate policy after the Russian invasion of Ukraine: Introduction to a special issue on EU green recovery in the post-Covid-19 period," Energy Policy, Elsevier, vol. 177(C).
    3. Paul Simshauser, 2022. "Fuel Poverty and the 2022 Energy Crisis," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 55(4), pages 503-514, December.
    4. Intan Nazirah Mohammad & Clarence M. Ongkudon & Mailin Misson, 2020. "Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch," Energies, MDPI, vol. 13(22), pages 1-12, November.
    5. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    2. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    3. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    4. Wenjia Jin & Kaushlendra Singh & John Zondlo, 2013. "Pyrolysis Kinetics of Physical Components of Wood and Wood-Polymers Using Isoconversion Method," Agriculture, MDPI, vol. 3(1), pages 1-21, January.
    5. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    7. Gu, Jiafeng, 2023. "Energy poverty and government subsidies in China," Energy Policy, Elsevier, vol. 180(C).
    8. Francisco Rodríguez & Yuby Cruz & Idoia Estiati & Juan F. Saldarriaga, 2019. "Kinetic Study of Corn and Sugarcane Waste Oxidative Pyrolysis," Energies, MDPI, vol. 12(23), pages 1-14, December.
    9. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    10. Zhou, Limin & Zou, Hongbin & Wang, Yun & Le, Zhanggao & Liu, Zhirong & Adesina, Adesoji A., 2017. "Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene," Renewable Energy, Elsevier, vol. 102(PA), pages 134-141.
    11. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    12. Siddiqi, Hammad & Kumari, Usha & Biswas, Subrata & Mishra, Asmita & Meikap, B.C., 2020. "A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste," Energy, Elsevier, vol. 204(C).
    13. Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.
    14. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    15. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    16. Huang, Lei & Chen, Yucheng & Liu, Geng & Li, Shengnan & Liu, Yun & Gao, Xu, 2015. "Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis," Energy, Elsevier, vol. 87(C), pages 31-40.
    17. Nocquet, Timothée & Dupont, Capucine & Commandre, Jean-Michel & Grateau, Maguelone & Thiery, Sébastien & Salvador, Sylvain, 2014. "Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1 – Experimental study," Energy, Elsevier, vol. 72(C), pages 180-187.
    18. Singh, Yengkhom Disco & Mahanta, Pinakeswar & Bora, Utpal, 2017. "Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production," Renewable Energy, Elsevier, vol. 103(C), pages 490-500.
    19. Elisa Moretti & Ettore Stamponi, 2023. "The Renewable Energy Communities in Italy and the Role of Public Administrations: The Experience of the Municipality of Assisi between Challenges and Opportunities," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    20. Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2192-:d:1388018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.