IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5966-d445625.html
   My bibliography  Save this article

Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch

Author

Listed:
  • Intan Nazirah Mohammad

    (Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia)

  • Clarence M. Ongkudon

    (Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia)

  • Mailin Misson

    (Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia)

Abstract

Oil palm empty fruit bunches (EFB) are recoverable lignocellulosic biomass serving as feedstock for biofuel production. The major hurdle in producing biofuel from biomass is the abundance of embedded recalcitrant lignin. Pretreatment is a key step to increase the accessibility of enzymes to fermentable sugars. In this study, thermal pretreatments at moderate temperatures ranging from 150 °C to 210 °C, at different durations (30–120 min) and EFB particle sizes (1–10 mm), were employed to maximize lignin degradation. Observation through a scanning electron microscope (SEM) revealed disruptions in EFB structure and the removal of silica bodies and other impurities upon thermal pretreatment. Remarkable changes on the elemental contents and functional groups occurred, as was evident from the energy dispersive X-ray (EDX) and Fourier transform infrared (FTIR) analyses. The smallest EFB size yielded higher lignin degradation—about 2.3-fold and 1.2-fold higher—than the biggest and moderate tested EFB sizes, indicating a smaller particle size provides a higher surface area for bioreaction. Furthermore, applying a longer duration of treatment and a higher temperature enhanced lignin degradation by up to 58%. This study suggests that moderate thermal treatment could enhance lignin degradation by altering the physicochemical structure of EFB, which is beneficial in improving biofuel production.

Suggested Citation

  • Intan Nazirah Mohammad & Clarence M. Ongkudon & Mailin Misson, 2020. "Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch," Energies, MDPI, vol. 13(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5966-:d:445625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chamseddine Guizani & Mejdi Jeguirim & Sylvie Valin & Lionel Limousy & Sylvain Salvador, 2017. "Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity," Energies, MDPI, vol. 10(6), pages 1-18, June.
    2. Zulkefli, Syarilaida & Abdulmalek, Emilia & Abdul Rahman, Mohd. Basyaruddin, 2017. "Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk," Renewable Energy, Elsevier, vol. 107(C), pages 36-41.
    3. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    4. Rahul Datta & Aditi Kelkar & Divyashri Baraniya & Ali Molaei & Amitava Moulick & Ram Swaroop Meena & Pavel Formanek, 2017. "Enzymatic Degradation of Lignin in Soil: A Review," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aili Hamzah, Adila Fazliyana & Hamzah, Muhammad Hazwan & Nurulhuda, Khairudin & Che Man, Hasfalina & Ismail, Muhammad Heikal & Show, Pau Loke, 2024. "Utilization of subcritical water for improving methane production from oil palm empty fruit bunch by anaerobic co-digestion: Process optimization, compositional, chemical, and morphological analysis," Renewable Energy, Elsevier, vol. 231(C).
    2. Jannisa Kasawapat & Attaso Khamwichit & Wipawee Dechapanya, 2024. "Waste-to-Energy Conversion of Rubberwood Residues for Enhanced Biomass Fuels: Process Optimization and Eco-Efficiency Evaluation," Energies, MDPI, vol. 17(21), pages 1-30, October.
    3. Hyeok Jin Kim & Chan Park & Rabin Nepal & Sea Cheon Oh, 2021. "Hydrothermal Treatment of Empty Fruit Bunches to Enhance Fuel Characteristics," Energies, MDPI, vol. 14(5), pages 1-14, March.
    4. Attaso Khamwichit & Jannisa Kasawapat & Narongsak Seekao & Wipawee Dechapanya, 2024. "Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis," Energies, MDPI, vol. 17(9), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    2. Mejdi Jeguirim & Lionel Limousy, 2017. "Biomass Chars: Elaboration, Characterization and Applications," Energies, MDPI, vol. 10(12), pages 1-7, December.
    3. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2018. "Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects," Energies, MDPI, vol. 11(9), pages 1-16, September.
    4. Alba Dieguez-Alonso & Axel Funke & Andrés Anca-Couce & Alessandro Girolamo Rombolà & Gerardo Ojeda & Jörg Bachmann & Frank Behrendt, 2018. "Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability," Energies, MDPI, vol. 11(3), pages 1-26, February.
    5. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2017. "Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing," Energies, MDPI, vol. 10(10), pages 1-15, October.
    6. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    7. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    8. Rahul Datta & Divyashri Baraniya & Yong-Feng Wang & Aditi Kelkar & Ram Swaroop Meena & Gulab Singh Yadav & Maria Teresa Ceccherini & Pavel Formanek, 2017. "Amino Acid: Its Dual Role as Nutrient and Scavenger of Free Radicals in Soil," Sustainability, MDPI, vol. 9(8), pages 1-9, August.
    9. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    10. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    11. Zhiqiang Gu & Qi Zhang & Guobi Sun & Jiaxin Lu & Yuxin Liu & Zhenxia Huang & Shuming Xu & Jianghua Xiong & Yuhuan Liu, 2023. "Pretreatment of Biogas Slurry by Modified Biochars to Promote High-Value Treatment of Wastewater by Microalgae," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    12. Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.
    13. Amna Abdeljaoued & Nausika Querejeta & Inés Durán & Noelia Álvarez-Gutiérrez & Covadonga Pevida & Mohamed Hachemi Chahbani, 2018. "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO 2 /CH 4 Separation," Energies, MDPI, vol. 11(7), pages 1-14, July.
    14. Ye-Eun Lee & I-Tae Kim & Yeong-Seok Yoo, 2018. "Stabilization of High-Organic-Content Water Treatment Sludge by Pyrolysis," Energies, MDPI, vol. 11(12), pages 1-14, November.
    15. Mishra, Ranjeet Kumar & Mohanty, Kaustubha, 2019. "Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties," Renewable Energy, Elsevier, vol. 141(C), pages 549-558.
    16. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    17. Aiya Chantarasiri, 2020. "Klebsiella and Enterobacter Isolated from Mangrove Wetland Soils in Thailand and Their Application in Biological Decolorization of Textile Reactive Dyes," IJERPH, MDPI, vol. 17(20), pages 1-21, October.
    18. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    19. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    20. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5966-:d:445625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.