IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1379-d149488.html
   My bibliography  Save this article

In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization

Author

Listed:
  • Daniele Basso

    (Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy)

  • Elsa Weiss-Hortala

    (IMT Mines Albi, Centre RAPSODEE, UMR CNRS 5302, Campus Jarlard, F-81013 Albi CEDEX 09, France)

  • Francesco Patuzzi

    (Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy)

  • Marco Baratieri

    (Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy)

  • Luca Fiori

    (DICAM, Department of Civil, Environmental and Mechanical Engineering, University of Trento—Via Mesiano 77, 38123 Trento, Italy)

Abstract

Grape marc is a residue of the wine-making industry, nowadays not always effectively valorized. It consists of grape seeds (mostly lignocellulosic) and grape skins (mostly holocellulosic). In order to understand possible correlations between seeds and skins in forming hydrochar for it to be used as a solid biofuel, hydrothermal carbonization (HTC) was applied separately to grape marc and its constituents. HTC was performed at several process conditions (temperature: 180, 220 and 250 °C; reaction time: 0.5, 1, 3 and 8 h), in order to collect data on the three phases formed downstream of the process: solid (hydrochar), liquid and gas. An in deep analytical characterization was performed: ultimate analysis and calorific value for hydrochar, Total Organic Carbon (TOC) and Inductively Coupled Plasma (IPC) analyses for liquid phase, composition for gas phase. In previous works, the same experimental apparatus was used to treat residual biomass, obtaining interesting results in terms of possible hydrochar exploitation as a solid biofuel. Thus, the main objectives of this work were both to get results for validating the hypothesis to apply HTC to this feedstock, and to collect data for subsequent theoretical investigations. Moreover, a severity model was developed to allow a predictive description of the hydrochar yield as a function of a unique parameter condensing both temperature and reaction time effects. The results obtained demonstrate that this process can upgrade wet residues into a solid biofuel ad that the process can be satisfactorily described in terms of a severity factor.

Suggested Citation

  • Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1379-:d:149488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
    2. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    3. Lu, Liang & Namioka, Tomoaki & Yoshikawa, Kunio, 2011. "Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes," Applied Energy, Elsevier, vol. 88(11), pages 3659-3664.
    4. Seung-Yong Oh & Young-Man Yoon, 2017. "Energy Recovery Efficiency of Poultry Slaughterhouse Sludge Cake by Hydrothermal Carbonization," Energies, MDPI, vol. 10(11), pages 1-13, November.
    5. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    6. Chamseddine Guizani & Mejdi Jeguirim & Sylvie Valin & Lionel Limousy & Sylvain Salvador, 2017. "Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity," Energies, MDPI, vol. 10(6), pages 1-18, June.
    7. Chang Liu & Xin Huang & Lingzhao Kong, 2017. "Efficient Low Temperature Hydrothermal Carbonization of Chinese Reed for Biochar with High Energy Density," Energies, MDPI, vol. 10(12), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nepu Saha & Maurizio Volpe & Luca Fiori & Roberto Volpe & Antonio Messineo & M. Toufiq Reza, 2020. "Cationic Dye Adsorption on Hydrochars of Winery and Citrus Juice Industries Residues: Performance, Mechanism, and Thermodynamics," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Ramos, João S. & Ferreira, Ana F., 2022. "Techno-economic analysis and life cycle assessment of olive and wine industry co-products valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Isaac Lorero & Arturo J. Vizcaíno & Francisco J. Alguacil & Félix A. López, 2020. "Activated Carbon from Winemaking Waste: Thermoeconomic Analysis for Large-Scale Production," Energies, MDPI, vol. 13(23), pages 1-22, December.
    4. René A. Garrido & Camila Lagos & Carolina Luna & Jaime Sánchez & Georgina Díaz, 2021. "Study of the Potential Uses of Hydrochar from Grape Pomace and Walnut Shells Generated from Hydrothermal Carbonization as an Alternative for the Revalorization of Agri-Waste in Chile," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    5. Roberta Ferrentino & Fabio Merzari & Luca Fiori & Gianni Andreottola, 2020. "Coupling Hydrothermal Carbonization with Anaerobic Digestion for Sewage Sludge Treatment: Influence of HTC Liquor and Hydrochar on Biomethane Production," Energies, MDPI, vol. 13(23), pages 1-19, November.
    6. Md Tahmid Islam & Al Ibtida Sultana & Cadianne Chambers & Swarna Saha & Nepu Saha & Kawnish Kirtania & M. Toufiq Reza, 2022. "Recent Progress on Emerging Applications of Hydrochar," Energies, MDPI, vol. 15(24), pages 1-45, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mejdi Jeguirim & Lionel Limousy, 2017. "Biomass Chars: Elaboration, Characterization and Applications," Energies, MDPI, vol. 10(12), pages 1-7, December.
    2. Pablo J. Arauzo & Maciej P. Olszewski & Andrea Kruse, 2018. "Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock," Energies, MDPI, vol. 11(11), pages 1-15, November.
    3. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2017. "Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing," Energies, MDPI, vol. 10(10), pages 1-15, October.
    4. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    5. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    6. Zhiyu Li & Weiming Yi & Zhihe Li & Chunyan Tian & Peng Fu & Yuchun Zhang & Ling Zhou & Jie Teng, 2020. "Preparation of Solid Fuel Hydrochar over Hydrothermal Carbonization of Red Jujube Branch," Energies, MDPI, vol. 13(2), pages 1-10, January.
    7. Mejdi Jeguirim & Lionel Limousy, 2019. "Biomass Chars: Elaboration, Characterization and Applications II," Energies, MDPI, vol. 12(3), pages 1-6, January.
    8. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2018. "Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects," Energies, MDPI, vol. 11(9), pages 1-16, September.
    9. Intan Nazirah Mohammad & Clarence M. Ongkudon & Mailin Misson, 2020. "Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch," Energies, MDPI, vol. 13(22), pages 1-12, November.
    10. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    12. Alba Dieguez-Alonso & Axel Funke & Andrés Anca-Couce & Alessandro Girolamo Rombolà & Gerardo Ojeda & Jörg Bachmann & Frank Behrendt, 2018. "Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability," Energies, MDPI, vol. 11(3), pages 1-26, February.
    13. Seung-Yong Oh & Young-Man Yoon, 2017. "Energy Recovery Efficiency of Poultry Slaughterhouse Sludge Cake by Hydrothermal Carbonization," Energies, MDPI, vol. 10(11), pages 1-13, November.
    14. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    15. Danso-Boateng, E. & Holdich, R.G. & Shama, G. & Wheatley, A.D. & Sohail, M. & Martin, S.J., 2013. "Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production," Applied Energy, Elsevier, vol. 111(C), pages 351-357.
    16. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    17. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    18. Piotr Wojewódzki & Joanna Lemanowicz & Bozena Debska & Samir A. Haddad & Erika Tobiasova, 2022. "The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration," Energies, MDPI, vol. 16(1), pages 1-16, December.
    19. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    20. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1379-:d:149488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.