IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4686-d410798.html
   My bibliography  Save this article

Cationic Dye Adsorption on Hydrochars of Winery and Citrus Juice Industries Residues: Performance, Mechanism, and Thermodynamics

Author

Listed:
  • Nepu Saha

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Maurizio Volpe

    (Faculty of Engineering and Architecture, University of Enna KORE, 94100 Enna, Italy)

  • Luca Fiori

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy
    Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige (Trento), Italy)

  • Roberto Volpe

    (School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK)

  • Antonio Messineo

    (Faculty of Engineering and Architecture, University of Enna KORE, 94100 Enna, Italy)

  • M. Toufiq Reza

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA)

Abstract

With the increasing needs of clean water supplies, the use of biomass wastes and residues for environmental remediation is essential for environmental sustainability. In this study, the residues from winery and citrus juice industries, namely grape skin and orange peel, respectively, were first converted to hydrochars by hydrothermal carbonization (HTC) and then a cationic dye (methylene blue) adsorption was studied on hydrochars. Hydrochars from both feedstocks were produced at three different temperatures (180, 220, and 250 °C) and a fixed residence time (1 h) to evaluate the hydrochar’s performance on the dye adsorption. The hydrochars were characterized in terms of their pH, pH at point of zero charge (pH PZC ), surface functionalities, and surface area. A batch adsorption study of the dye was carried out with variable adsorbate concentration, pH, and temperature. Two adsorption isotherms namely Langmuir and Freundlich models were fitted at 4, 20, and 36 °C. The thermodynamic properties of adsorption (Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS)) were evaluated from the isotherms fittings. Results showed that the dye adsorption on both hydrochars was significant and followed Langmuir isotherm. The maximum adsorption capacity on citrus waste hydrochar was higher than the winery waste hydrochar at any corresponding HTC temperature. Although hydrochars showed the lowest surface area (46.16 ± 0.11 and 34.08 ± 1.23 m 2 /g for citrus and winery wastes, respectively) at 180 °C, their adsorption was the highest, owing to their maximum density of total oxygen functional groups (23.24 ± 0.22 and 32.69 ± 1.39 µmol/m 2 for citrus and winery wastes, respectively), which decreased with the increase in HTC temperature. This research shows a sustainable route for the production of highly effective adsorbent materials at lower HTC temperatures from citrus and winery wastes.

Suggested Citation

  • Nepu Saha & Maurizio Volpe & Luca Fiori & Roberto Volpe & Antonio Messineo & M. Toufiq Reza, 2020. "Cationic Dye Adsorption on Hydrochars of Winery and Citrus Juice Industries Residues: Performance, Mechanism, and Thermodynamics," Energies, MDPI, vol. 13(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4686-:d:410798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    2. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    3. Nepu Saha & Akbar Saba & Pretom Saha & Kyle McGaughy & Diana Franqui-Villanueva & William J. Orts & William M. Hart-Cooper & M. Toufiq Reza, 2019. "Hydrothermal Carbonization of Various Paper Mill Sludges: An Observation of Solid Fuel Properties," Energies, MDPI, vol. 12(5), pages 1-18, March.
    4. Simona Ciuta & Stefano Antognoni & Elena Cristina Rada & Marco Ragazzi & Adrian Badea & Lucian Ionel Cioca, 2016. "Respirometric Index and Biogas Potential of Different Foods and Agricultural Discarded Biomass," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    5. Akbar Saba & Kyle McGaughy & M. Toufiq Reza, 2019. "Techno-Economic Assessment of Co-Hydrothermal Carbonization of a Coal-Miscanthus Blend," Energies, MDPI, vol. 12(4), pages 1-17, February.
    6. Bide Zhang & Mohammad Heidari & Bharat Regmi & Shakirudeen Salaudeen & Precious Arku & Mahendra Thimmannagari & Animesh Dutta, 2018. "Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar," Energies, MDPI, vol. 11(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manal Hessien, 2022. "Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels into Hydrochar for Environmental Applications," Energies, MDPI, vol. 15(10), pages 1-13, May.
    2. Ajit Singh & Andrew Gill & David Lian Keong Lim & Agustina Kasmaruddin & Taghi Miri & Anita Chakrabarty & Hui Hui Chai & Anurita Selvarajoo & Festo Massawe & Yousif Abdalla Abakr & Kumbirai Ivyne Mate, 2022. "Feasibility of Bio-Coal Production from Hydrothermal Carbonization (HTC) Technology Using Food Waste in Malaysia," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    3. Michela Lucian & Fabio Merzari & Michele Gubert & Antonio Messineo & Maurizio Volpe, 2021. "Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    4. René A. Garrido & Camila Lagos & Carolina Luna & Jaime Sánchez & Georgina Díaz, 2021. "Study of the Potential Uses of Hydrochar from Grape Pomace and Walnut Shells Generated from Hydrothermal Carbonization as an Alternative for the Revalorization of Agri-Waste in Chile," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    5. Md Tahmid Islam & Al Ibtida Sultana & Cadianne Chambers & Swarna Saha & Nepu Saha & Kawnish Kirtania & M. Toufiq Reza, 2022. "Recent Progress on Emerging Applications of Hydrochar," Energies, MDPI, vol. 15(24), pages 1-45, December.
    6. Md Rifat Hasan & Nepu Saha & Thomas Quaid & M. Toufiq Reza, 2021. "Formation of Carbon Quantum Dots via Hydrothermal Carbonization: Investigate the Effect of Precursors," Energies, MDPI, vol. 14(4), pages 1-10, February.
    7. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Lorero & Arturo J. Vizcaíno & Francisco J. Alguacil & Félix A. López, 2020. "Activated Carbon from Winemaking Waste: Thermoeconomic Analysis for Large-Scale Production," Energies, MDPI, vol. 13(23), pages 1-22, December.
    2. Manfredi Picciotto Maniscalco & Maurizio Volpe & Antonio Messineo, 2020. "Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review," Energies, MDPI, vol. 13(16), pages 1-26, August.
    3. Michela Lucian & Fabio Merzari & Michele Gubert & Antonio Messineo & Maurizio Volpe, 2021. "Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    4. Kacper Świechowski & Marek Liszewski & Przemysław Bąbelewski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Fuel Properties of Torrefied Biomass from Pruning of Oxytree," Data, MDPI, vol. 4(2), pages 1-10, April.
    5. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    6. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    7. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    8. Clara Lisseth Mendoza Martinez & Ekaterina Sermyagina & Esa Vakkilainen, 2021. "Hydrothermal Carbonization of Chemical and Biological Pulp Mill Sludges," Energies, MDPI, vol. 14(18), pages 1-18, September.
    9. Von Cossel, M. & Lebendig, F. & Müller, M. & Hieber, C. & Iqbal, Y. & Cohnen, J. & Jablonowski, N.D., 2022. "Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    12. Przemysław Motyl & Marcin Wikło & Julita Bukalska & Bartosz Piechnik & Rafał Kalbarczyk, 2020. "A New Design for Wood Stoves Based on Numerical Analysis and Experimental Research," Energies, MDPI, vol. 13(5), pages 1-11, February.
    13. Salah Jellali & Antonis A. Zorpas & Sulaiman Alhashmi & Mejdi Jeguirim, 2022. "Recent Advances in Hydrothermal Carbonization of Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-6, September.
    14. Constantin Stan & Gerardo Collaguazo & Constantin Streche & Tiberiu Apostol & Diana Mariana Cocarta, 2018. "Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Improving Biogas Production and Startup," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    15. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    16. Tianjiao Cheng & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2020. "Comparison of Torrefaction and Hydrothermal Treatment as Pretreatment Technologies for Rice Husks," Energies, MDPI, vol. 13(19), pages 1-20, October.
    17. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    18. Kamila Przybysz & Edyta Małachowska & Danuta Martyniak & Piotr Boruszewski & Halina Kalinowska & Piotr Przybysz, 2019. "Production of Sugar Feedstocks for Fermentation Processes from Selected Fast Growing Grasses," Energies, MDPI, vol. 12(16), pages 1-12, August.
    19. Roberto Nisticò, 2017. "Aquatic-Derived Biomaterials for a Sustainable Future: A European Opportunity," Resources, MDPI, vol. 6(4), pages 1-15, November.
    20. Ramos, João S. & Ferreira, Ana F., 2022. "Techno-economic analysis and life cycle assessment of olive and wine industry co-products valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4686-:d:410798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.