IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3735-d1445090.html
   My bibliography  Save this article

Insights into the Co-Exploration Potential of Gas in the Shale and Tight Sandstone of the Lower Silurian Formation in the Gongtan Syncline Area in Southeastern Sichuan Basin, SW China

Author

Listed:
  • Shengxiu Wang

    (National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

  • Ye Zhang

    (National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China)

  • Wei Wang

    (National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

  • Yang Yang

    (China National Petroleum Corporation Changqing Oilfield Branch Fifth Gas Production Plant, Xi’an 710016, China)

  • Qiaoli Wang

    (National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

  • Chuan Yu

    (National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

  • Difei Zhao

    (Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221000, China)

  • Chunlin Zeng

    (National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

  • Yao Xu

    (National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

Abstract

This work aims to explore the Lower Silurian shale gas and tight sandstone gas accumulation conditions in the Gongtan Syncline, southeastern Sichuan Basin. The sedimentary environment, organic geochemical characteristics, reservoir characteristics, gas content, and preservation conditions of the reservoir were comprehensively analyzed. The results show that the Wufeng–Longmaxi Formation shale formed in a deep-water shelf characterized by a large thickness (50–70 m), appropriate total organic carbon content (0.5–5.47%), high maturity (2.38%), high brittle mineral content (67.10%), and large gas content (0.71–1.64 m 3 /t), and the formations show the good resource potential of the shale gas. The Xintan Formation formed in a lower shore phase, and the tight sandstone is locally developed with a small thickness. The Xiaoheba Formation formed in an upper-middle shore phase, and the tight sandstone is stably distributed with large thicknesses. The porosity and permeability of the two sets of sandstone are small and some natural fractures are developed in the sandstone, but the fracture filling degree is higher. The results of well logging show that there are abnormally high values of total hydrocarbon in both the Xintan Formation and Xiaoheba Formation; this indicates that tight sandstone gas is developed in the Lower Silurian strata. A comprehensive study indicates that the Lower Silurian of the Gongtan Syncline has the geological conditions for the formation of shale gas and tight sandstone gas, which are the “Two gases” with good co-exploration prospects.

Suggested Citation

  • Shengxiu Wang & Ye Zhang & Wei Wang & Yang Yang & Qiaoli Wang & Chuan Yu & Difei Zhao & Chunlin Zeng & Yao Xu, 2024. "Insights into the Co-Exploration Potential of Gas in the Shale and Tight Sandstone of the Lower Silurian Formation in the Gongtan Syncline Area in Southeastern Sichuan Basin, SW China," Energies, MDPI, vol. 17(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3735-:d:1445090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wakamatsu, Hiroki & Aruga, Kentaka, 2013. "The impact of the shale gas revolution on the U.S. and Japanese natural gas markets," Energy Policy, Elsevier, vol. 62(C), pages 1002-1009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xunpeng & Padinjare Variam, Hari Malamakkavu, 2016. "Gas and LNG trading hubs, hub indexation and destination flexibility in East Asia," Energy Policy, Elsevier, vol. 96(C), pages 587-596.
    2. Hasanli, Mübariz, 2024. "Re-examining crude oil and natural gas price relationship: Evidence from time-varying regime-switching models," Energy Economics, Elsevier, vol. 133(C).
    3. Cuilin Li & Ya-Juan Du & Qiang Ji & Jiang-bo Geng, 2019. "Multiscale Market Integration and Nonlinear Granger Causality between Natural Gas Futures and Physical Markets," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    4. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    5. Afees Adebare Salisu & Idris A. Adediran, 2018. "The U.S. Shale Oil Revolution and the Behavior of Commodity Prices," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 3(1), pages 27-53, September.
    6. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    7. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
    8. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    9. Rubaszek, Michał & Uddin, Gazi Salah, 2020. "The role of underground storage in the dynamics of the US natural gas market: A threshold model analysis," Energy Economics, Elsevier, vol. 87(C).
    10. Li, Xiuming & Sun, Mei & Gao, Cuixia & He, Huizi, 2019. "The spillover effects between natural gas and crude oil markets: The correlation network analysis based on multi-scale approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 306-324.
    11. Cró, Susana & Martins, António Miguel, 2017. "Structural breaks in international tourism demand: Are they caused by crises or disasters?," Tourism Management, Elsevier, vol. 63(C), pages 3-9.
    12. Jiang, Yong & Zhou, Zhongbao & Liu, Qing & Lin, Ling & Xiao, Helu, 2020. "How do oil price shocks affect the output volatility of the U.S. energy mining industry? The roles of structural oil price shocks," Energy Economics, Elsevier, vol. 87(C).
    13. Theodosios Perifanis & Athanasios Dagoumas, 2020. "Price and Volatility Spillovers between Crude Oil and Natural Gas markets in Europe and Japan-Korea," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 432-446.
    14. Szafranek, Karol & Papież, Monika & Rubaszek, Michał & Śmiech, Sławomir, 2023. "How immune is the connectedness of European natural gas markets to exceptional shocks?," Resources Policy, Elsevier, vol. 85(PA).
    15. Luis Aguiar-Conraria & Gilmar Conceigao & Maria Joana Soares, 2022. "How Far is Gas from becoming a Global Commodity?," The Energy Journal, , vol. 43(4), pages 179-198, May.
    16. Szafranek, Karol & Szafrański, Grzegorz & Leszczyńska-Paczesna, Agnieszka, 2024. "Inflation returns. Revisiting the role of external and domestic shocks with Bayesian structural VAR," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 789-810.
    17. Arora, Vipin & Cai, Yiyong, 2014. "U.S. natural gas exports and their global impacts," Applied Energy, Elsevier, vol. 120(C), pages 95-103.
    18. Michał Rubaszek & Karol Szafranek, 2025. "The European energy crisis and the US natural gas market dynamics: a structural VAR investigation," International Economics and Economic Policy, Springer, vol. 22(1), pages 1-22, February.
    19. Potts, Todd B. & Yerger, David B., 2016. "Marcellus Shale and structural breaks in oil and gas markets: The case of Pennsylvania," Energy Economics, Elsevier, vol. 57(C), pages 50-58.
    20. Caporin, Massimiliano & Fontini, Fulvio, 2017. "The long-run oil–natural gas price relationship and the shale gas revolution," Energy Economics, Elsevier, vol. 64(C), pages 511-519.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3735-:d:1445090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.