IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3106-d1420942.html
   My bibliography  Save this article

Multi-Objective Optimization towards Heat Dissipation Performance of the New Tesla Valve Channels with Partitions in a Liquid-Cooled Plate

Author

Listed:
  • Liang Xu

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Hongwei Lin

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Naiyuan Hu

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lei Xi

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yunlong Li

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jianmin Gao

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The utilization of liquid-cooled plates has been increasingly prevalent within the thermal management of batteries for new energy vehicles. Using Tesla valves as internal flow channels of liquid-cooled plates can improve heat dissipation characteristics. However, conventional Tesla valve flow channels frequently experience challenges such as inconsistencies in heat dissipations and unacceptably high levels of pressure loss. In light of this, this paper proposes a new type of Tesla valve with partitions, which is used as internal channel for liquid-cooled plate. Its purpose is to solve the shortcomings of existing flow channels. Under the working conditions of Reynolds number equal to 1000, the neural network prediction-NSGA-II multi-objective optimization method is used to optimize the channel structural parameters. The objective is to identify the optimal structural configuration that exhibits the greatest Nusselt number while simultaneously exhibiting the lowest Fanning friction factor. The variables to consider are the half of partition thickness H, partition length L, and the fillet radius R. The study result revealed that the optimal parameter combination consisted of H = 0.25 mm, R = 1.253 mm, L = 0.768 mm, which demonstrated the best performance. The Fanning friction factor of the optimized flow channel is substantially reduced compared to the reference channel, reducing by approximately 16.4%. However, the Nusselt number is not noticeably increased, increasing by only 0.9%. This indicates that the optimized structure can notably reduce the fluid’s friction resistance and pressure loss and slightly enhance the heat dissipation characteristics.

Suggested Citation

  • Liang Xu & Hongwei Lin & Naiyuan Hu & Lei Xi & Yunlong Li & Jianmin Gao, 2024. "Multi-Objective Optimization towards Heat Dissipation Performance of the New Tesla Valve Channels with Partitions in a Liquid-Cooled Plate," Energies, MDPI, vol. 17(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3106-:d:1420942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, L.W. & Lee, P.S. & Kong, X.X. & Fan, Y. & Chou, S.K., 2014. "Ultra-thin minichannel LCP for EV battery thermal management," Applied Energy, Elsevier, vol. 113(C), pages 1786-1794.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choon Kit Chan & Chi Hong Chung & Jeyagopi Raman, 2023. "Optimizing Thermal Management System in Electric Vehicle Battery Packs for Sustainable Transportation," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    2. Kumar, Kartik & Sarkar, Jahar & Mondal, Swasti Sundar, 2024. "Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework," Applied Energy, Elsevier, vol. 355(C).
    3. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    4. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    6. Shuwen Zhou & Yuemin Zhao & Shangyuan Gao, 2021. "Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    8. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    10. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    11. Saw, Lip Huat & Ye, Yonghuang & Yew, Ming Chian & Chong, Wen Tong & Yew, Ming Kun & Ng, Tan Ching, 2017. "Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system," Applied Energy, Elsevier, vol. 204(C), pages 1489-1499.
    12. Sarath Arangat Jayarajan & Ulugbek Azimov, 2023. "CFD Modeling and Thermal Analysis of a Cold Plate Design with a Zig-Zag Serpentine Flow Pattern for Li-Ion Batteries," Energies, MDPI, vol. 16(14), pages 1-23, July.
    13. Wenzhe Li & Youhang Zhou & Haonan Zhang & Xuan Tang, 2023. "A Review on Battery Thermal Management for New Energy Vehicles," Energies, MDPI, vol. 16(13), pages 1-20, June.
    14. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    15. Xiongfei Zheng & Xue Hu & Lixin Zhang & Xinwang Zhang & Feng Chen & Chunliang Mai, 2022. "Study on the Effect of Spoiler Columns on the Heat Dissipation Performance of S-Type Runner Water-Cooling Plates," Energies, MDPI, vol. 15(9), pages 1-13, April.
    16. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    18. Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
    19. Naqiuddin, Nor Haziq & Saw, Lip Huat & Yew, Ming Chian & Yusof, Farazila & Poon, Hiew Mun & Cai, Zuansi & Thiam, Hui San, 2018. "Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method," Applied Energy, Elsevier, vol. 222(C), pages 437-450.
    20. Satyam Panchal & Krishna Gudlanarva & Manh-Kien Tran & Roydon Fraser & Michael Fowler, 2020. "High Reynold’s Number Turbulent Model for Micro-Channel Cold Plate Using Reverse Engineering Approach for Water-Cooled Battery in Electric Vehicles," Energies, MDPI, vol. 13(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3106-:d:1420942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.