IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3692-d1132727.html
   My bibliography  Save this article

Investigation on Effective Thermal Conductivity of Fibrous Porous Materials as Vacuum Insulation Panels’ Core Using Lattice Boltzmann Method

Author

Listed:
  • Bangqi Chen

    (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)

  • Ankang Kan

    (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)

  • Zhaofeng Chen

    (College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jiaxiang Zhang

    (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)

  • Lixia Yang

    (College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

Vacuum Insulation Panels (VIPs) provide significant adiabatic performance for heat/cooling systems to reduce energy consumption. The application of fibrous porous material (FPM) as the ideal core of VIPs has gained global attention in recent decades. The microstructure and physical properties of FPMs, filled as novel VIPs’ core material, and holding superior thermal performance, affected effective thermal conductivity (ETC) greatly. Aiming to deeply understand heat transfer mechanisms, a holistic simulation method that combined with a developed 3D FPM structure generation method and a D3Q15-Lattice Boltzmann method (LBM) is proposed to simulate the heat transfer in FPM and to illuminate the influence factors of ETC on the microstructure of FPM in a vacuum. The improved and modified mesoscopic 3D fibrous random micro-structure generation approach involved five structural parameters: generation probability of nucleus growth, fiber length, diameter, coincidence rate, and orientation angle. The calculation model of ETC is established, and the discrete velocity, distribution, evolution, and boundary conditions of D3Q15-LBM are invested in detail. The model is validated with influences of different microstructure parameters. It indicated that FPM with finer diameter, smaller average pore size, and bigger orientation angle easily gain the lower ETC in a vacuum. The ETC was also affected by the orientation angles of fibers. The more the heat transfer direction is inconsistent with the length direction of the fiber, the better the adiabatic performance is. The reliability of the model is verified by comparison, and this work is a reference to optimize the fibrous core of VIPs.

Suggested Citation

  • Bangqi Chen & Ankang Kan & Zhaofeng Chen & Jiaxiang Zhang & Lixia Yang, 2023. "Investigation on Effective Thermal Conductivity of Fibrous Porous Materials as Vacuum Insulation Panels’ Core Using Lattice Boltzmann Method," Energies, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3692-:d:1132727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    2. Alam, M. & Singh, H. & Limbachiya, M.C., 2011. "Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions," Applied Energy, Elsevier, vol. 88(11), pages 3592-3602.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Camilo Mora & Randi L. Rollins & Katie Taladay & Michael B. Kantar & Mason K. Chock & Mio Shimada & Erik C. Franklin, 2018. "Bitcoin emissions alone could push global warming above 2°C," Nature Climate Change, Nature, vol. 8(11), pages 931-933, November.
    5. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    6. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    7. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    8. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biwang Lu & Jing He, 2024. "Equivalent Thermal Conductivity of Topology-Optimized Composite Structure for Three Typical Conductive Heat Transfer Models," Energies, MDPI, vol. 17(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    2. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    3. Wu, Tian & Wang, Shouyang & Wang, Lining & Tang, Xiao, 2022. "Contribution of China's online car-hailing services to its 2050 carbon target: Energy consumption assessment based on the GCAM-SE model," Energy Policy, Elsevier, vol. 160(C).
    4. Zhengyang Li & Yukuan Wang & Yafeng Lu & Shravan Kumar Ghimire, 2023. "Spatio-Temporal Evolution of Carbon Emission in China’s Tertiary Industry: A Decomposition of Influencing Factors from the Perspective of Energy-Industry-Consumption," Energies, MDPI, vol. 16(15), pages 1-18, August.
    5. Feng, Tong & Lin, Zhongguo & Du, Huibin & Qiu, Yueming & Zuo, Jian, 2021. "Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities," Research in International Business and Finance, Elsevier, vol. 58(C).
    6. Jianjian He & Pengyan Zhang, 2018. "Evaluating the Coordination of Industrial-Economic Development Based on Anthropogenic Carbon Emissions in Henan Province, China," IJERPH, MDPI, vol. 15(9), pages 1-19, August.
    7. Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Sheng Xu & Wenran Pan & Demei Wen, 2023. "Do Carbon Emission Trading Schemes Promote the Green Transition of Enterprises? Evidence from China," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    9. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    10. Shang, Wen-Long & Ling, Yantao & Ochieng, Washington & Yang, Linchuan & Gao, Xing & Ren, Qingzhong & Chen, Yilin & Cao, Mengqiu, 2024. "Driving forces of CO2 emissions from the transport, storage and postal sectors: A pathway to achieving carbon neutrality," Applied Energy, Elsevier, vol. 365(C).
    11. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    12. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    13. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    14. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    15. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    16. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    17. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    18. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    19. Sun, Lu & Liu, Wenjing & Li, Zhaoling & Cai, Bofeng & Fujii, Minoru & Luo, Xiao & Chen, Wei & Geng, Yong & Fujita, Tsuyoshi & Le, Yiping, 2021. "Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development," Applied Energy, Elsevier, vol. 284(C).
    20. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3692-:d:1132727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.