IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3264-d1116684.html
   My bibliography  Save this article

Operation Approval for Commercial Airborne Wind Energy Systems

Author

Listed:
  • Volkan Salma

    (Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands
    European Space Research and Technology Centre, European Space Agency, 2200 AG Noordwijk, The Netherlands)

  • Roland Schmehl

    (Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands)

Abstract

Integrating the operation of airborne wind energy systems safely into the airspace requires a systematic qualification process. It seems likely that the European Union Aviation Safety Agency will approve commercial systems as unmanned aircraft systems within the “specific” category, requiring risk-based operational authorization. In this paper, we interpret the risk assessment methodology for airborne wind energy systems, going through the ten required steps of the recommended procedure and discussing the particularities of tethered energy-harvesting systems. Although the described process applies to the entire field of airborne wind energy, we detail it for a commercial flexible-wing airborne wind energy system. We find that the air risk mitigations improve the consolidated specific assurance and integrity level by a factor of two. It is expected that the framework will increase the safety level of commercial airborne wind energy systems and ultimately lead to operation approval.

Suggested Citation

  • Volkan Salma & Roland Schmehl, 2023. "Operation Approval for Commercial Airborne Wind Energy Systems," Energies, MDPI, vol. 16(7), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3264-:d:1116684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    2. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    3. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    4. Nelson, Sarah & Allwood, Julian M., 2021. "The technological and social timelines of climate mitigation: Lessons from 12 past transitions," Energy Policy, Elsevier, vol. 152(C).
    5. Dong, Weiwei & Zhao, Guohua & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2022. "A novel hybrid decision making approach for the strategic selection of wind energy projects," Renewable Energy, Elsevier, vol. 185(C), pages 321-337.
    6. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    7. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    8. Jiang, Zhiyu & Yang, Limin & Gao, Zhen & Moan, Torgeir, 2022. "Integrated dynamic analysis of a spar floating wind turbine with a hydraulic drivetrain," Renewable Energy, Elsevier, vol. 201(P1), pages 608-623.
    9. Lu, Jintao & Rong, Dan & Lev, Benjamin & Liang, Mengshang & Zhang, Chong & Gao, Yangyang, 2023. "Constraints affecting the promotion of waste incineration power generation project in China: A perspective of improved technology acceptance model," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    10. Geng, D. & Evans, S. & Kishita, Y., 2023. "The identification and classification of energy waste for efficient energy supervision in manufacturing factories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Nouri, Reza & Vasel-Be-Hagh, Ahmad & Archer, Cristina L., 2020. "The Coriolis force and the direction of rotation of the blades significantly affect the wake of wind turbines," Applied Energy, Elsevier, vol. 277(C).
    12. Leonidas Mantzos & Tobias Wiesenthal & Frederik Neuwahl & Mate Rozsai, 2019. "The POTEnCIA Central scenario: An EU energy outlook to 2050," JRC Research Reports JRC118353, Joint Research Centre.
    13. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
    14. Dylan Eijkelhof & Gabriel Buendía & Roland Schmehl, 2023. "Low- and High-Fidelity Aerodynamic Simulations of Box Wing Kites for Airborne Wind Energy Applications," Energies, MDPI, vol. 16(7), pages 1-19, March.
    15. da Silva, L.S.P. & Sergiienko, N.Y. & Cazzolato, B. & Ding, B., 2022. "Dynamics of hybrid offshore renewable energy platforms: Heaving point absorbers connected to a semi-submersible floating offshore wind turbine," Renewable Energy, Elsevier, vol. 199(C), pages 1424-1439.
    16. Yessica Arellano-Prieto & Elvia Chavez-Panduro & Pierluigi Salvo Rossi & Francesco Finotti, 2022. "Energy Storage Solutions for Offshore Applications," Energies, MDPI, vol. 15(17), pages 1-34, August.
    17. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    18. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    19. Kumar, K. Ravi & Dashora, Kavya & Krishnan, Naveen & Sanyal, S. & Chandra, Hukum & Dharmaraja, S. & Kumari, Vandita, 2021. "Feasibility assessment of renewable energy resources for tea plantation and industry in India - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3264-:d:1116684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.