IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3081-d1109713.html
   My bibliography  Save this article

A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting

Author

Listed:
  • Zizhen Cheng

    (School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Li Wang

    (School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Yumeng Yang

    (School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China)

Abstract

Accurate medium- and long-term power load forecasting is of great significance for the scientific planning and safe operation of power systems. Monthly power load has multiscale time series correlation and seasonality. The existing models face the problems of insufficient feature extraction and a large volume of prediction models constructed according to seasons. Therefore, a hybrid feature pyramid CNN-LSTM model with seasonal inflection month correction for medium- and long-term power load forecasting is proposed. The model is constructed based on linear and nonlinear combination forecasting. With the aim to address the insufficient extraction of multiscale temporal correlation in load, a time series feature pyramid structure based on causal dilated convolution is proposed, and the accuracy of the model is improved by feature extraction and fusion of different scales. For the problem that the model volume of seasonal prediction is too large, a seasonal inflection monthly load correction strategy is proposed to construct a unified model to predict and correct the monthly load of the seasonal change inflection point, so as to improve the model’s ability to deal with seasonality. The model proposed in this paper is verified on the actual power data in Shaoxing City.

Suggested Citation

  • Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3081-:d:1109713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
    2. Ghofrani, M. & Ghayekhloo, M. & Arabali, A. & Ghayekhloo, A., 2015. "A hybrid short-term load forecasting with a new input selection framework," Energy, Elsevier, vol. 81(C), pages 777-786.
    3. Xiaorui Shao & Chang-Soo Kim & Palash Sontakke, 2020. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-Channel and Multi-Scale Feature Fusion CNN–LSTM," Energies, MDPI, vol. 13(8), pages 1-22, April.
    4. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    5. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    6. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    7. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    8. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning," Energies, MDPI, vol. 12(17), pages 1-18, August.
    9. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    10. Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
    11. Xin-bo Yang, 2021. "A Novel Extrapolation-Based Grey Prediction Model for Forecasting China’s Total Electricity Consumption," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, June.
    12. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    13. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    2. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    3. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    4. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    5. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    6. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2023. "Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms," Energies, MDPI, vol. 16(11), pages 1-23, June.
    7. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    8. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    9. Julan Chen & Guangheng Qi & Kai Wang, 2023. "Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-22, August.
    10. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    11. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    12. Mingping Liu & Xihao Sun & Qingnian Wang & Suhui Deng, 2022. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, MDPI, vol. 15(19), pages 1-22, September.
    13. Hyojoo Son & Changwan Kim, 2020. "A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    14. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    15. Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
    16. Tan Ngoc Dinh & Gokul Sidarth Thirunavukkarasu & Mehdi Seyedmahmoudian & Saad Mekhilef & Alex Stojcevski, 2023. "Energy Consumption Forecasting in Commercial Buildings during the COVID-19 Pandemic: A Multivariate Multilayered Long-Short Term Memory Time-Series Model with Knowledge Injection," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    17. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    18. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    19. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    20. Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3081-:d:1109713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.