IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3103-d344794.html
   My bibliography  Save this article

A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity

Author

Listed:
  • Hyojoo Son

    (Department of Architectural Engineering, Chung-Ang University, Seoul 06974, Korea)

  • Changwan Kim

    (Department of Architectural Engineering, Chung-Ang University, Seoul 06974, Korea)

Abstract

Forecasting electricity demand at the regional or national level is a key procedural element of power-system planning. However, achieving such objectives in the residential sector, the primary driver of peak demand, is challenging given this sector’s pattern of constantly fluctuating and gradually increasing energy usage. Although deep learning algorithms have recently yielded promising results in various time series analyses, their potential applicability to forecasting monthly residential electricity demand has yet to be fully explored. As such, this study proposed a forecasting model with social and weather-related variables by introducing long short-term memory (LSTM), which has been known to be powerful among deep learning-based approaches for time series forecasting. The validation of the proposed model was performed using a set of data spanning 22 years in South Korea. The resulting forecasting performance was evaluated on the basis of six performance measures. Further, this model’s performance was subjected to a comparison with the performance of four benchmark models. The performance of the proposed model was exceptional according to all of the measures employed. This model can facilitate improved decision-making regarding power-system planning by accurately forecasting the electricity demands of the residential sector, thereby contributing to the efficient production and use of resources.

Suggested Citation

  • Hyojoo Son & Changwan Kim, 2020. "A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3103-:d:344794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    2. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    3. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    4. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    5. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    6. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    7. Apadula, Francesco & Bassini, Alessandra & Elli, Alberto & Scapin, Simone, 2012. "Relationships between meteorological variables and monthly electricity demand," Applied Energy, Elsevier, vol. 98(C), pages 346-356.
    8. Hondroyiannis, George, 2004. "Estimating residential demand for electricity in Greece," Energy Economics, Elsevier, vol. 26(3), pages 319-334, May.
    9. Luca Massidda & Marino Marrocu, 2017. "Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System," Energies, MDPI, vol. 10(12), pages 1-16, December.
    10. Yi-Tui Chen, 2017. "The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    11. Adeshina Y. Alani & Isaac O. Osunmakinde, 2017. "Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes," Sustainability, MDPI, vol. 9(11), pages 1-27, October.
    12. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    13. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    14. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    15. Anin Aroonruengsawat & Maximilian Auffhammer, 2011. "Impacts of Climate Change on Residential Electricity Consumption: Evidence from Billing Data," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 311-342, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Liu & Ting Zhang & Aiqing Kang & Jianzhu Li & Xiaohui Lei, 2021. "Research on Runoff Simulations Using Deep-Learning Methods," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    2. Ali Mokhtar & Nadhir Al-Ansari & Wessam El-Ssawy & Renata Graf & Pouya Aghelpour & Hongming He & Salma M. Hafez & Mohamed Abuarab, 2023. "Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1557-1580, March.
    3. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    4. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    5. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    6. Hyunsoo Kim & Youngwoo Kwon & Yeol Choi, 2020. "Assessing the Impact of Public Rental Housing on the Housing Prices in Proximity: Based on the Regional and Local Level of Price Prediction Models Using Long Short-Term Memory (LSTM)," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    7. Bibi Ibrahim & Luis Rabelo, 2021. "A Deep Learning Approach for Peak Load Forecasting: A Case Study on Panama," Energies, MDPI, vol. 14(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    2. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    3. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    4. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    5. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
    6. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    7. Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
    8. Yun Duan, 2022. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    9. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    10. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, vol. 11(4), pages 1-34, April.
    11. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    12. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    13. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    14. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    16. Chun Yang & Shijun You & Yingzhu Han & Xuan Wang & Ji Li & Lu Wang, 2023. "Research on Optimization Method of Integrated Energy System Network Planning," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    17. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    18. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    19. Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
    20. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3103-:d:344794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.