IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2492-d1088851.html
   My bibliography  Save this article

Pyrolysis Oil Derived from Plastic Bottle Caps: Characterization of Combustion and Emissions in a Diesel Engine

Author

Listed:
  • Somkiat Maithomklang

    (Department of Mechatronics and Robotics Engineering, School of Engineer and Innovation, Rajamangala University of Technology Tawan-ok, 43 Moo 6, Bang Phra, Sriracha District, Chonburi 20110, Thailand)

  • Ekarong Sukjit

    (School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima 30000, Thailand)

  • Jiraphon Srisertpol

    (School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima 30000, Thailand)

  • Niti Klinkaew

    (Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima 30000, Thailand)

  • Khatha Wathakit

    (School of Agricultural Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima 30000, Thailand)

Abstract

Recycling used plastic can help reduce the amount of plastic waste generated. Existing methods, namely the process of pyrolysis, are chemical heating processes that decompose plastics in the absence of oxygen. This decomposes the plastics in a controlled environment in order to produce fuel from waste. The present study consequently investigated the physical and chemical properties of pyrolysis oil derived from plastic bottle caps (WPBCO) and the effects on the engine performance and emission characteristics of a diesel engine operating on WPBCO. The experiments were conducted with a single-cylinder diesel engine operating at a constant 1500 rpm under various engine loading conditions. The experimental results of the chemical properties of test fuels indicated that WPBCO and diesel fuels have similar functional groups and chemical components. In comparison, WPBCO has a lower kinematic viscosity, density, specific gravity, flash point, fire point, cetane index, and distillation behavior than diesel fuel. However, WPBCO has a high gross calorific value, which makes it a suitable replacement for fossil fuel. In comparison to diesel fuel, the use of WPBCO in diesel engines results in increased brake-specific fuel consumption (BSFC) and brake thermal efficiency (BTE) under all load conditions. The combustion characteristics of the engine indicate that the use of WPBCO resulted in decreased in-cylinder pressure (ICP), rate of heat release (RoHR), and combustion stability compared to diesel fuel. In addition, the combustion of WPBCO advances the start of combustion more strongly than diesel fuel. The use of WPBCO increased emissions of NO X , CO, HC, and smoke. In addition, the particulate matter (PM) analysis showed that the combustion of WPBCO generated a higher PM concentration than diesel fuel. When WPBCO was combusted, the maximum rate of soot oxidation required a lower temperature, meaning that oxidizing the soot took less energy and that it was easier to break down the soot.

Suggested Citation

  • Somkiat Maithomklang & Ekarong Sukjit & Jiraphon Srisertpol & Niti Klinkaew & Khatha Wathakit, 2023. "Pyrolysis Oil Derived from Plastic Bottle Caps: Characterization of Combustion and Emissions in a Diesel Engine," Energies, MDPI, vol. 16(5), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2492-:d:1088851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rakesh Kumar & Anurag Verma & Arkajyoti Shome & Rama Sinha & Srishti Sinha & Prakash Kumar Jha & Ritesh Kumar & Pawan Kumar & Shubham & Shreyas Das & Prabhakar Sharma & P. V. Vara Prasad, 2021. "Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions," Sustainability, MDPI, vol. 13(17), pages 1-41, September.
    2. Chalita Kaewbuddee & Ekarong Sukjit & Jiraphon Srisertpol & Somkiat Maithomklang & Khatha Wathakit & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn, 2020. "Evaluation of Waste Plastic Oil-Biodiesel Blends as Alternative Fuels for Diesel Engines," Energies, MDPI, vol. 13(11), pages 1-16, June.
    3. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    4. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    5. Mani, M. & Nagarajan, G. & Sampath, S., 2011. "Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine," Energy, Elsevier, vol. 36(1), pages 212-219.
    6. Khairil & Teuku Meurah Indra Riayatsyah & Samsul Bahri & Sarwo Edhy Sofyan & Jalaluddin Jalaluddin & Fitranto Kusumo & Arridina Susan Silitonga & Yanti Padli & Muhammad Jihad & Abd Halim Shamsuddin, 2020. "Experimental Study on the Performance of an SI Engine Fueled by Waste Plastic Pyrolysis Oil–Gasoline Blends," Energies, MDPI, vol. 13(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Chalita Kaewbuddee & Somkiat Maithomklang & Prasert Aengchuan & Attasit Wiangkham & Niti Klinkaew & Atthaphon Ariyarit & Ekarong Sukjit, 2023. "Effects of Alcohol-Blended Waste Plastic Oil on Engine Performance Characteristics and Emissions of a Diesel Engine," Energies, MDPI, vol. 16(3), pages 1-25, January.
    3. Chonlakarn Wongkhorsub & Wantana Chaowasin & Kampanart Theinnoi, 2022. "Experimental Evaluation of Performance and Combustion Characteristics of Blended Plastic Pyrolysis Oil in Enhanced Diesel Engine," Energies, MDPI, vol. 15(23), pages 1-17, December.
    4. Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
    5. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    6. Thi Thanh Thuy Phan & Van Viet Nguyen & Hong Thi Thu Nguyen & Chun-Hung Lee, 2022. "Integrating Citizens’ Importance-Performance Aspects into Sustainable Plastic Waste Management in Danang, Vietnam," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    7. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.
    8. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    9. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Ren-Shou Yu & Sher Singh, 2023. "Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems," Sustainability, MDPI, vol. 15(17), pages 1-21, September.
    11. Akhmad Mustafa & Rachman Syah & Mudian Paena & Ketut Sugama & Endhay Kusnendar Kontara & Irwan Muliawan & Hidayat Suryanto Suwoyo & Andi Indra Jaya Asaad & Ruzkiah Asaf & Erna Ratnawati & Admi Athirah, 2023. "Strategy for Developing Whiteleg Shrimp ( Litopenaeus vannamei ) Culture Using Intensive/Super-Intensive Technology in Indonesia," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    12. Chalita Kaewbuddee & Ekarong Sukjit & Jiraphon Srisertpol & Somkiat Maithomklang & Khatha Wathakit & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn, 2020. "Evaluation of Waste Plastic Oil-Biodiesel Blends as Alternative Fuels for Diesel Engines," Energies, MDPI, vol. 13(11), pages 1-16, June.
    13. Kasiraman, G. & Nagalingam, B. & Balakrishnan, M., 2012. "Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending," Energy, Elsevier, vol. 47(1), pages 116-124.
    14. Kalargaris, Ioannis & Tian, Guohong & Gu, Sai, 2017. "The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine," Energy, Elsevier, vol. 131(C), pages 179-185.
    15. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    16. Shivashimpi, Mahantesh M. & Alur, S.A. & Topannavar, S.N. & Dodamani, B.M., 2018. "Combined effect of combustion chamber shapes and nozzle geometry on the performance and emission characteristics of C.I. engine operated on Pongamia," Energy, Elsevier, vol. 154(C), pages 17-26.
    17. Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
    18. Teuku Azuar Rizal & Khairil & Mahidin & Husni Husin & Ahmadi & Fahrizal Nasution & Hamdani Umar, 2022. "The Experimental Study of Pangium Edule Biodiesel in a High-Speed Diesel Generator for Biopower Electricity," Energies, MDPI, vol. 15(15), pages 1-15, July.
    19. Mohan, Revu Krishna & Sarojini, Jajimoggala & Ağbulut, Ümit & Rajak, Upendra & Verma, Tikendra Nath & Reddy, K. Thirupathi, 2023. "Energy recovery from waste plastic oils as an alternative fuel source and comparative assessment of engine characteristics at varying fuel injection timings," Energy, Elsevier, vol. 275(C).
    20. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2492-:d:1088851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.