IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2480-d1088433.html
   My bibliography  Save this article

A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment

Author

Listed:
  • Alper Ozpinar

    (Department of Mechatronics Engineering, Istanbul Commerce University, Istanbul 34840, Turkey)

Abstract

Various human activities emit greenhouse gasses (GHGs) that contribute to global climate change. These include the burning of fossil fuels for energy production, transportation, and industrial uses, and the clearing of forests to create farmland and pasture, all for urban and industrial development. As a result, temperatures around the world are rising, extreme weather events are occurring more frequently, and human health is suffering because of these changes. As a result of massive traffic, agriculture, and urbanization, the natural environment is being destroyed, negatively affecting humans and other living things. Humanity plans to live in smart cities within this ecosystem as the world evolves around these mutations. A smart city uses technology and data to improve the quality of life of its citizens and the efficiency of its urban systems. Smart cities have the potential to be more sustainable because they use technology and data to improve the efficiency of urban systems and reduce the negative impact of human activities on the environment. Smart cities can also use technology to improve green transportation and waste management and reduce water consumption, which can help conserve natural resources and protect the environment. Smart cities can create livable, efficient, and sustainable urban environments using technology and data. This paper presents a new Enterprise Architecture Framework for reducing carbon emissions for environmental sustainability that combines gamification and green behavior with blockchain architecture to ensure a system that is trustworthy, secure, and scalable for shareholders, citizens, service providers, and technology vendors. In order to achieve this, the hyper-integrated framework approach explains a roadmap for how sustainability for reducing carbon emissions from transportation is based on an optimized MaaS approach improved by gamification. As part of this study, a computational model and a formulation are proposed to calculate the activity exchange values in the MaaS ecosystem for swapping, changing, and bartering for assets within the integrated system. This paper aims to propose the framework and a module interoperability approach, so numerical values for computation parameters are not included as they may belong to other research studies. In spite of this, a case study section has been provided as an example of a calculation approach.

Suggested Citation

  • Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2480-:d:1088433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivana Martinčević & Predrag Brlek & Nives Domjan Kačarević, 2022. "Mobility as a Service (MaaS) as a Sustainability Concept for Tourist Destinations," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Farrow, Katherine & Grolleau, Gilles & Ibanez, Lisette, 2017. "Social Norms and Pro-environmental Behavior: A Review of the Evidence," Ecological Economics, Elsevier, vol. 140(C), pages 1-13.
    3. Sujae Kim & Sangho Choo & Sungtaek Choi & Hyangsook Lee, 2021. "What Factors Affect Commuters’ Utility of Choosing Mobility as a Service? An Empirical Evidence from Seoul," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    4. Ali Gohar & Gianfranco Nencioni, 2021. "The Role of 5G Technologies in a Smart City: The Case for Intelligent Transportation System," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    5. Kerrie A Wilson, 2007. "Conserving Biodiversity Efficiently: What to Do, Where, and When," Working Papers id:1202, eSocialSciences.
    6. Ye Guo & Chen Liang, 2016. "Blockchain application and outlook in the banking industry," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-12, December.
    7. Oleg Dashkevych & Boris A. Portnov, 2022. "Criteria for Smart City Identification: A Systematic Literature Review," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    8. Konstantina Arnaoutaki & Efthimios Bothos & Babis Magoutas & Attila Aba & Domokos Esztergár-Kiss & Gregoris Mentzas, 2021. "A Recommender System for Mobility-as-a-Service Plans Selection," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    9. Farrow, Katherine & Grolleau, Gilles & Ibanez, Lisette, 2017. "Social Norms and Pro-environmental Behavior: A Review of the Evidence," Ecological Economics, Elsevier, vol. 140(C), pages 1-13.
    10. Leonardo Guevara & Fernando Auat Cheein, 2020. "The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    11. Noreen Beg & Jan Corfee Morlot & Ogunlade Davidson & Yaw Afrane-Okesse & Lwazikazi Tyani & Fatma Denton & Youba Sokona & Jean Philippe Thomas & Emilio L�bre La Rovere & Jyoti K. Parikh & Kirit Parikh , 2002. "Linkages between climate change and sustainable development," Climate Policy, Taylor & Francis Journals, vol. 2(2-3), pages 129-144, September.
    12. Coaffee, Jon, 2008. "Risk, resilience, and environmentally sustainable cities," Energy Policy, Elsevier, vol. 36(12), pages 4633-4638, December.
    13. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    14. Claudia Caballini & Maria Vittoria Corazza & Valentina Costa & Ilaria Delponte & Erika Olivari, 2022. "Assessing the Feasibility of MaaS: A Contribution from Three Italian Case Studies," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    15. Taher M. Ghazal & Mohammad Kamrul Hasan & Muhammad Turki Alshurideh & Haitham M. Alzoubi & Munir Ahmad & Syed Shehryar Akbar & Barween Al Kurdi & Iman A. Akour, 2021. "IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review," Future Internet, MDPI, vol. 13(8), pages 1-19, August.
    16. Ertz, Myriam & Karakas, Fahri & Sarigöllü, Emine, 2016. "Exploring pro-environmental behaviors of consumers: An analysis of contextual factors, attitude, and behaviors," Journal of Business Research, Elsevier, vol. 69(10), pages 3971-3980.
    17. Kerrie A Wilson & Emma C Underwood & Scott A Morrison & Kirk R Klausmeyer & William W Murdoch & Belinda Reyers & Grant Wardell-Johnson & Pablo A Marquet & Phil W Rundel & Marissa F McBride & Robert L , 2007. "Conserving Biodiversity Efficiently: What to Do, Where, and When," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-12, August.
    18. Annalisa Cocchia, 2014. "Smart and Digital City: A Systematic Literature Review," Progress in IS, in: Renata Paola Dameri & Camille Rosenthal-Sabroux (ed.), Smart City, edition 127, pages 13-43, Springer.
    19. Leonidas G. Anthopoulos, 2015. "Understanding the Smart City Domain: A Literature Review," Public Administration and Information Technology, in: Manuel Pedro Rodríguez-Bolívar (ed.), Transforming City Governments for Successful Smart Cities, edition 127, pages 9-21, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkargkavouzi, Anastasia & Halkos, George & Matsiori, Steriani, 2019. "How do motives and knowledge relate to intention to perform environmental behavior? Assessing the mediating role of constraints," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    2. Chiara Franco & Claudia Ghisetti, 2022. "What shapes the “value-action” gap? The role of time perception reconsidered," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 39(3), pages 1023-1053, October.
    3. Jiarong Shi & Zihao Jiang, 2023. "Willingness to pay a premium price for green products: does a reference group matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8699-8727, August.
    4. Ralph Hansmann & Claudia R. Binder, 2020. "Determinants of Different Types of Positive Environmental Behaviors: An Analysis of Public and Private Sphere Actions," Sustainability, MDPI, vol. 12(20), pages 1-30, October.
    5. Bartels, Lara & Kesternich, Martin, 2022. "Motivate the crowd or crowd- them out? The impact of local government spending on the voluntary provision of a green public good," ZEW Discussion Papers 22-040, ZEW - Leibniz Centre for European Economic Research.
    6. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    7. Ming, Yaxin & Deng, Huixin & Wu, Xiaoyue, 2022. "The negative effect of air pollution on people's pro-environmental behavior," Journal of Business Research, Elsevier, vol. 142(C), pages 72-87.
    8. Maccarrone, Giovanni & Marini, Marco A. & Tarola, Ornella, 2023. "Shop Until You Drop: the Unexpected Effects of Anticonsumerism and Environmentalism," FEEM Working Papers 330384, Fondazione Eni Enrico Mattei (FEEM).
    9. Karoline Gamma & Robert Mai & Moritz Loock, 2020. "The Double-Edged Sword of Ethical Nudges: Does Inducing Hypocrisy Help or Hinder the Adoption of Pro-environmental Behaviors?," Journal of Business Ethics, Springer, vol. 161(2), pages 351-373, January.
    10. Salgado-Rojas, José & Álvarez-Miranda, Eduardo & Hermoso, Virgilio & Garcia-Gonzalo, Jordi & Weintraub, Andrés, 2020. "A mixed integer programming approach for multi-action planning for threat management," Ecological Modelling, Elsevier, vol. 418(C).
    11. Falk, Armin & Boneva, Teodora & Chopra, Felix, 2021. "Fighting Climate Change: the Role of Norms, Preferences, and Moral Values," CEPR Discussion Papers 16343, C.E.P.R. Discussion Papers.
    12. Andrzej Paszkiewicz & Bartosz Pawłowicz & Bartosz Trybus & Mateusz Salach, 2021. "Traffic Intersection Lane Control Using Radio Frequency Identification and 5G Communication," Energies, MDPI, vol. 14(23), pages 1-17, December.
    13. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    14. Carolin V. Zorell, 2020. "Nudges, Norms, or Just Contagion? A Theory on Influences on the Practice of (Non-)Sustainable Behavior," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    15. Castro-Santa, Juana & Drews, Stefan & Bergh, Jeroen van den, 2023. "Nudging low-carbon consumption through advertising and social norms," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 102(C).
    16. Jana Eßer & Manuel Frondel & Stephan Sommer, 2023. "Soziale Normen und der Emissionsausgleich bei Flügen: Evidenz für deutsche Haushalte [Social Norms and Flight Emission Offsets: Evidence for German Households]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(1), pages 71-99, March.
    17. John A. Gallo & Amanda T. Lombard & Richard M. Cowling, 2022. "Conservation Planning for Action: End-User Engagement in the Development and Dual-Centric Weighting of a Spatial Decision Support System," Land, MDPI, vol. 12(1), pages 1-14, December.
    18. Welsch, Heinz, 2021. "How climate-friendly behavior relates to moral identity and identity-protective cognition: Evidence from the European social surveys," Ecological Economics, Elsevier, vol. 185(C).
    19. Drechsler, Martin & Hartig, Florian, 2011. "Conserving biodiversity with tradable permits under changing conservation costs and habitat restoration time lags," Ecological Economics, Elsevier, vol. 70(3), pages 533-541, January.
    20. Leonhard K. Lades & Kate Laffan & Till O. Weber, 2020. "Do economic preferences predict pro-environmental behaviour?," Working Papers 202003, Geary Institute, University College Dublin.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2480-:d:1088433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.