IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6469-d397399.html
   My bibliography  Save this article

The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems

Author

Listed:
  • Leonardo Guevara

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
    These authors contributed equally to this work.)

  • Fernando Auat Cheein

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
    These authors contributed equally to this work.)

Abstract

The new mobile technology, 5G, challenges the current scenario in communications by overcoming the flaws of currently working 4G. Such new technology offers to smart cities and intelligent transportation systems a new way to become fully integrated by allowing massive simultaneous connections and ubiquity of network, even under high mobility situations or dense populated areas. In this way, 5G will become a key enabler for real Internet of Things and its corresponding Internet of Vehicles. This discussion is aimed at providing, in a comprehensive manner, how 5G technology will impact on smart cities, intelligent transportation systems –including autonomous or semi-autonomous vehicles– and vehicular communications, its technical, economic and legal challenges, in the following years.

Suggested Citation

  • Leonardo Guevara & Fernando Auat Cheein, 2020. "The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6469-:d:397399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Jianghui & Liu, Jinping & Tseng, Fang-Mei, 2020. "An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    2. Amer, Hayder M. & Al-Kashoash, Hayder & Hawes, Matthew & Chaqfeh, Moumena & Kemp, Andrew & Mihaylova, Lyudmila, 2019. "Centralized simulated annealing for alleviating vehicular congestion in smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 235-248.
    3. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    4. Edward Oughton, 2018. "Towards 5G: scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure," Working Papers 2017/04 (revised), Cambridge Judge Business School, University of Cambridge.
    5. Anandkumar Balasubramaniam & Anand Paul & Won-Hwa Hong & HyunCheol Seo & Jeong Hong Kim, 2017. "Comparative Analysis of Intelligent Transportation Systems for Sustainable Environment in Smart Cities," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
    6. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    7. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    8. Oughton, Edward & Frias, Zoraida & Russell, Tom & Sicker, Douglas & Cleevely, David D., 2018. "Towards 5G: Scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 141-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Paszkiewicz & Bartosz Pawłowicz & Bartosz Trybus & Mateusz Salach, 2021. "Traffic Intersection Lane Control Using Radio Frequency Identification and 5G Communication," Energies, MDPI, vol. 14(23), pages 1-17, December.
    2. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    3. Oswaldo Menéndez & Loreto Romero & Fernando Auat Cheein, 2020. "Serial Switch Only Rectifier as a Power Conditioning Circuit for Electric Field Energy Harvesting," Energies, MDPI, vol. 13(20), pages 1-14, October.
    4. Saleh M. Altowaijri & Mohamed Ayari, 2025. "The Synergistic Impact of 5G on Cloud-to-Edge Computing and the Evolution of Digital Applications," Mathematics, MDPI, vol. 13(16), pages 1-16, August.
    5. Constantin Aurelian Ionescu & Melinda Timea Fülöp & Dan Ioan Topor & Sorinel Căpușneanu & Teodora Odett Breaz & Sorina Geanina Stănescu & Mihaela Denisa Coman, 2021. "The New Era of Business Digitization through the Implementation of 5G Technology in Romania," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    6. Dimitrios Rizopoulos & Marina Laskari & Gerasimos Kouloumbis & Ioanna Fergadiotou & Patrick Durkin & Kati Kõrbe Kaare & Muhammad Mahtab Alam, 2022. "5G as an Enabler of Connected-and-Automated Mobility in European Cross-Border Corridors—A Market Assessment," Sustainability, MDPI, vol. 14(21), pages 1-30, November.
    7. Okkie Putriani & Sigit Priyanto & Imam Muthohar & Mukhammad Rizka Fahmi Amrozi, 2022. "Millimetre Wave and Sub-6 5G Readiness of Mobile Network Big Data for Public Transport Planning," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    8. Ali Gohar & Gianfranco Nencioni, 2021. "The Role of 5G Technologies in a Smart City: The Case for Intelligent Transportation System," Sustainability, MDPI, vol. 13(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    2. Malik Almaliki & Amna Bamaqa & Mahmoud Badawy & Tamer Ahmed Farrag & Hossam Magdy Balaha & Mostafa A. Elhosseini, 2025. "Adaptive Traffic Light Management for Mobility and Accessibility in Smart Cities," Sustainability, MDPI, vol. 17(14), pages 1-31, July.
    3. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
    4. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    5. Ali Gohar & Gianfranco Nencioni, 2021. "The Role of 5G Technologies in a Smart City: The Case for Intelligent Transportation System," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    6. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    7. Shami, Mohammad Reza & Rad, Vahid Bigdeli & Moinifar, Maryam, 2022. "The structural model of indicators for evaluating the quality of urban smart living," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    8. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    9. Yang, Zhen & Gao, Weijun & Han, Qing & Qi, Liyan, 2024. "Aggravating or alleviating? Smart city construction and urban inequality in China," Technology in Society, Elsevier, vol. 77(C).
    10. Richard Hu, 2019. "The State of Smart Cities in China: The Case of Shenzhen," Energies, MDPI, vol. 12(22), pages 1-18, November.
    11. Bencsik, Barbara & Palmié, Maximilian & Parida, Vinit & Wincent, Joakim & Gassmann, Oliver, 2023. "Business models for digital sustainability: Framework, microfoundations of value capture, and empirical evidence from 130 smart city services," Journal of Business Research, Elsevier, vol. 160(C).
    12. El Barachi, May & Salim, Taghreed Abu & Nyadzayo, Munyaradzi W. & Mathew, Sujith & Badewi, Amgad & Amankwah-Amoah, Joseph, 2022. "The relationship between citizen readiness and the intention to continuously use smart city services: Mediating effects of satisfaction and discomfort," Technology in Society, Elsevier, vol. 71(C).
    13. Ginevra Balletto & Mara Ladu & Federico Camerin & Emilio Ghiani & Jacopo Torriti, 2022. "More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    14. Barrutia, Jose M. & Echebarria, Carmen & Aguado-Moralejo, Itziar & Apaolaza-Ibáñez, Vanessa & Hartmann, Patrick, 2022. "Leading smart city projects: Government dynamic capabilities and public value creation," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    15. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    16. Kusumastuti, Ratih Dyah & Nurmala, N. & Rouli, Juliana & Herdiansyah, Herdis, 2022. "Analyzing the factors that influence the seeking and sharing of information on the smart city digital platform: Empirical evidence from Indonesia," Technology in Society, Elsevier, vol. 68(C).
    17. Mohammed Balfaqih & Soltan Abed Alharbi, 2022. "Associated Information and Communication Technologies Challenges of Smart City Development," Sustainability, MDPI, vol. 14(23), pages 1-27, December.
    18. Adam Przybyłowski & Agnieszka Kałaska & Piotr Przybyłowski, 2022. "Quest for a Tool Measuring Urban Quality of Life: ISO 37120 Standard Sustainable Development Indicators," Energies, MDPI, vol. 15(8), pages 1-17, April.
    19. Fang Zhao & Catherine Prentice & Joseph Wallis & Arvind Patel & Marie-France Waxin, 2020. "An integrative study of the implications of the rise of coworking spaces in smart cities," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 467-486, December.
    20. Siyi Pu & Yitong Ou & Ou Bai, 2025. "Government Public Services and Regional Digital Transformation for Sustainable Development: An Innovation Ecosystem Perspective," Sustainability, MDPI, vol. 17(12), pages 1-19, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6469-:d:397399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.