IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1120-d102865.html
   My bibliography  Save this article

Comparative Analysis of Intelligent Transportation Systems for Sustainable Environment in Smart Cities

Author

Listed:
  • Anandkumar Balasubramaniam

    (Department of Computer Science and Engineering, Kyungpook National University, Daegu 702701, Korea)

  • Anand Paul

    (Department of Computer Science and Engineering, Kyungpook National University, Daegu 702701, Korea)

  • Won-Hwa Hong

    (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 702701, Korea)

  • HyunCheol Seo

    (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 702701, Korea)

  • Jeong Hong Kim

    (Department of Computer Science and Engineering, Kyungpook National University, Daegu 702701, Korea)

Abstract

In recent works on the Internet of Vehicles (IoV), “intelligent” and “sustainable” have been the buzzwords in the context of transportation. Maintaining sustainability in IoV is always a challenge. Sustainability in IoV can be achieved not only by the use of pollution-free vehicular systems, but also by maintenance of road traffic safety or prevention of accidents or collisions. With the aim of establishing an effective sustainable transportation planning system, this study performs a short analysis of existing sustainable transportation methods in the IoV. This study also analyzes various characteristics of sustainability and the advantages and disadvantages of existing transportation systems. Toward the end, this study provides a clear suggestion for effective sustainable transportation planning aimed at the maintenance of an eco-friendly environment and road traffic safety, which, in turn, would lead to a sustainable transportation system.

Suggested Citation

  • Anandkumar Balasubramaniam & Anand Paul & Won-Hwa Hong & HyunCheol Seo & Jeong Hong Kim, 2017. "Comparative Analysis of Intelligent Transportation Systems for Sustainable Environment in Smart Cities," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1120-:d:102865
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anand Paul & Seungmin Rho, 2016. "Probabilistic Model for M2M in IoT networking and communication," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(1), pages 59-66, May.
    2. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldona Jarašūnienė & Kristina Čižiūnienė & Artūras Petraška, 2022. "Sustainability Promotion by Digitalisation to Ensure the Quality of Less-Than-Truck Load Shipping," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    2. Zhong Wang & Rui Xu, 2022. "Price Controls and Platform Ecosystem: A Comparative Analysis of Parking Applications between Beijing and London," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    3. Muhammad Mazhar Rathore & Syed Attique Shah & Ahmed Awad & Dhirendra Shukla & Shanmuganathan Vimal & Anand Paul, 2021. "A Cyber-Physical System and Graph-Based Approach for Transportation Management in Smart Cities," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    4. Mariusz Kostrzewski & Magdalena Marczewska & Lorna Uden, 2023. "The Internet of Vehicles and Sustainability—Reflections on Environmental, Social, and Corporate Governance," Energies, MDPI, vol. 16(7), pages 1-20, April.
    5. Nadia Karina Gamboa-Rosales & José María Celaya-Padilla & Ana Luisa Hernandez-Gutierrez & Arturo Moreno-Baez & Carlos E. Galván-Tejada & Jorge I. Galván-Tejada & Edgar González-Fernández & Hamurabi Ga, 2020. "Visualizing the Intellectual Structure and Evolution of Intelligent Transportation Systems: A Systematic Analysis of Research Themes and Trends," Sustainability, MDPI, vol. 12(21), pages 1-30, October.
    6. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Global Optimality under Internet of Vehicles: Strategy to Improve Traffic Safety and Reduce Energy Dissipation," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    7. Marzena Kramarz & Lilla Knop & Edyta Przybylska & Katarzyna Dohn, 2021. "Stakeholders of the Multimodal Freight Transport Ecosystem in Polish–Czech–Slovak Cross-Border Area," Energies, MDPI, vol. 14(8), pages 1-32, April.
    8. Wei Tang & Tiancai Zhou & Jian Sun & Yurui Li & Weipeng Li, 2017. "Accelerated Urban Expansion in Lhasa City and the Implications for Sustainable Development in a Plateau City," Sustainability, MDPI, vol. 9(9), pages 1-19, August.
    9. Ali Gohar & Gianfranco Nencioni, 2021. "The Role of 5G Technologies in a Smart City: The Case for Intelligent Transportation System," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    10. Ammar Al-lami & Adam Torok, 2023. "Sustainability Indicators of Surface Public Transportation," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    11. Nikoleta Mikušová & Gabriel Fedorko & Vieroslav Molnár & Martina Hlatká & Rudolf Kampf & Veronika Sirková, 2021. "Possibility of a Solution of the Sustainability of Transport and Mobility with the Application of Discrete Computer Simulation—A Case Study," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    12. Leonardo Guevara & Fernando Auat Cheein, 2020. "The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems," Sustainability, MDPI, vol. 12(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    2. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    3. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    4. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    5. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    6. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.
    7. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    8. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    9. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    10. Miriam Müller & Oscar Reutter, 2017. "Vision Development towards a Sustainable North Rhine-Westphalia 2030 in a Science-Practice-Dialogue," Sustainability, MDPI, vol. 9(7), pages 1-27, June.
    11. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
    12. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    13. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    14. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    15. Abre-Rehmat Qurat-ul-Ann & Faisal Mehmood Mirza, 2021. "Multidimensional Energy Poverty in Pakistan: Empirical Evidence from Household Level Micro Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(1), pages 211-258, May.
    16. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
    17. Sujata Ashwarya, 2017. "Post-2003 Iran–Iraq Cooperation in the Oil and Gas Sector: Initiatives, Challenges, and Future Scenarios," Contemporary Review of the Middle East, , vol. 4(1), pages 84-118, March.
    18. Cheng-Yih Hong & Hsiu-Ching Chang, 2019. "Comparing the Impact of Wind Power and Solar Power Investment on Industrial Development: Application of Dynamic Energy Industry-related Models," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 38-44.
    19. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    20. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1120-:d:102865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.