IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2841-d793046.html
   My bibliography  Save this article

Quest for a Tool Measuring Urban Quality of Life: ISO 37120 Standard Sustainable Development Indicators

Author

Listed:
  • Adam Przybyłowski

    (Department of Transport and Logistics, Faculty of Navigation, Gdynia Maritime University, 81225 Gdynia, Poland)

  • Agnieszka Kałaska

    (Department of Finance and Management, Wyższa Szkoła Bankowa University in Gdańsk, 80266 Gdańsk, Poland)

  • Piotr Przybyłowski

    (Department of Commodity Science and Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81225 Gdynia, Poland)

Abstract

Humanity is exceeding planetary boundaries, and it seems that it is unlikely to meet internationally agreed sustainable development goals. Current trends and challenges in the domain of urban sustainability assessment have proven that measuring and interpreting results regarding quality of life requires a complex analysis. The aim of this paper is to investigate the possibility of comparing, in a transparent way, urban quality of life using sustainable development indicators based on the ISO 37120 standard, taking as case studies seven selected cities: Amsterdam, Buenos Aires, Dubai, Gdynia, London, Los Angeles and Zagreb. The hypothesis reads as follows: the ISO 37120 indicators, converted into partial and total utility value, then grouped within sustainable development dimensions (environmental, economic and social) may be used to measure the level of urban quality of life. Research results indicate that there are some significant and interesting differences between the compared cities within the environmental, economic and social pillars. The analysis, conducted with the use of utility method, may facilitate taking the right decisions on urban management, planning and investment. Thus, this tool may be useful for decision makers and help cities and communities of all sizes to become more safe, resilient, prosperous, inclusive, smart and sustainable.

Suggested Citation

  • Adam Przybyłowski & Agnieszka Kałaska & Piotr Przybyłowski, 2022. "Quest for a Tool Measuring Urban Quality of Life: ISO 37120 Standard Sustainable Development Indicators," Energies, MDPI, vol. 15(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2841-:d:793046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denis Michalina & Peter Mederly & Hans Diefenbacher & Benjamin Held, 2021. "Sustainable Urban Development: A Review of Urban Sustainability Indicator Frameworks," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    2. Andrzej Łebkowski, 2018. "Reduction of Fuel Consumption and Pollution Emissions in Inland Water Transport by Application of Hybrid Powertrain," Energies, MDPI, vol. 11(8), pages 1-16, July.
    3. Maria Cerreta & Eleonora Giovene di Girasole & Giuliano Poli & Stefania Regalbuto, 2020. "Operationalizing the Circular City Model for Naples’ City-Port: A Hybrid Development Strategy," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    4. Milena Vukmirovic & Suzana Gavrilovic & Dalibor Stojanovic, 2019. "The Improvement of the Comfort of Public Spaces as a Local Initiative in Coping with Climate Change," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    5. M. Sajid Khan & Mina Woo & Kichan Nam & Prakash K. Chathoth, 2017. "Smart City and Smart Tourism: A Case of Dubai," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    6. Robert Guzik & Arkadiusz Kołoś & Jakub Taczanowski & Łukasz Fiedeń & Krzysztof Gwosdz & Katarzyna Hetmańczyk & Jakub Łodziński, 2021. "The Second Generation Electromobility in Polish Urban Public Transport: The Factors and Mechanisms of Spatial Development," Energies, MDPI, vol. 14(22), pages 1-29, November.
    7. A. B. Savchenko & T. L. Borodina, 2020. "Green and Digital Economy for Sustainable Development of Urban Areas," Regional Research of Russia, Springer, vol. 10(4), pages 583-592, October.
    8. Mariusz J. Ligarski & Maciej Wolny, 2021. "Quality of Life Surveys as a Method of Obtaining Data for Sustainable City Development—Results of Empirical Research," Energies, MDPI, vol. 14(22), pages 1-20, November.
    9. Tadeusz Bocheński & Tadeusz Palmowski & Tomasz Studzieniecki, 2021. "The Development of Major Seaports in the Context of National Maritime Policy. The Case Study of Poland," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    10. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. Contreras, Gabriela & Platania, Federico, 2019. "Economic and policy uncertainty in climate change mitigation: The London Smart City case scenario," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 384-393.
    12. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    13. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    14. Monika Ziemska, 2021. "Exhaust Emissions and Fuel Consumption Analysis on the Example of an Increasing Number of HGVs in the Port City," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    15. Procopie Florin Guşul & Alina Ramona Butnariu, 2021. "Exploring The Relationship Between Smart City, Sustainable Development And Innovation As A Model For Urban Economic Growth," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 82-91, July.
    16. Maciej Tarkowski, 2021. "On the Emergence of Sociotechnical Regimes of Electric Urban Water Transit Systems," Energies, MDPI, vol. 14(19), pages 1-21, September.
    17. Elżbieta Szaruga & Zuzanna Kłos-Adamkiewicz & Agnieszka Gozdek & Elżbieta Załoga, 2021. "Linkages between Energy Delivery and Economic Growth from the Point of View of Sustainable Development and Seaports," Energies, MDPI, vol. 14(14), pages 1-61, July.
    18. Cristina ALPOPI & Cristina MANOLE & Sofia Elena COLESCA, 2011. "Assessment Of The Sustainable Urban Development Level Through The Use Of Indicators Of Sustainability," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(2), pages 78-87, May.
    19. Rubén Raedo, 2021. "Urban Sustainability Deficits: The Urban Non-Sustainability Index (UNSI) as a Tool for Urban Policy," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adalberto Santos-Júnior & Fernando Almeida-García & Paulo Morgado & Luiz Mendes-Filho, 2020. "Residents’ Quality of Life in Smart Tourism Destinations: A Theoretical Approach," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    2. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    3. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    4. Bundgaard, Lasse & Borrás, Susana, 2021. "City-wide scale-up of smart city pilot projects: Governance conditions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    5. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    6. Shami, Mohammad Reza & Rad, Vahid Bigdeli & Moinifar, Maryam, 2022. "The structural model of indicators for evaluating the quality of urban smart living," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    7. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    8. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Richard Hu, 2019. "The State of Smart Cities in China: The Case of Shenzhen," Energies, MDPI, vol. 12(22), pages 1-18, November.
    10. Bencsik, Barbara & Palmié, Maximilian & Parida, Vinit & Wincent, Joakim & Gassmann, Oliver, 2023. "Business models for digital sustainability: Framework, microfoundations of value capture, and empirical evidence from 130 smart city services," Journal of Business Research, Elsevier, vol. 160(C).
    11. El Barachi, May & Salim, Taghreed Abu & Nyadzayo, Munyaradzi W. & Mathew, Sujith & Badewi, Amgad & Amankwah-Amoah, Joseph, 2022. "The relationship between citizen readiness and the intention to continuously use smart city services: Mediating effects of satisfaction and discomfort," Technology in Society, Elsevier, vol. 71(C).
    12. Ginevra Balletto & Mara Ladu & Federico Camerin & Emilio Ghiani & Jacopo Torriti, 2022. "More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    13. Barrutia, Jose M. & Echebarria, Carmen & Aguado-Moralejo, Itziar & Apaolaza-Ibáñez, Vanessa & Hartmann, Patrick, 2022. "Leading smart city projects: Government dynamic capabilities and public value creation," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    14. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    15. Kusumastuti, Ratih Dyah & Nurmala, N. & Rouli, Juliana & Herdiansyah, Herdis, 2022. "Analyzing the factors that influence the seeking and sharing of information on the smart city digital platform: Empirical evidence from Indonesia," Technology in Society, Elsevier, vol. 68(C).
    16. Mohammed Balfaqih & Soltan Abed Alharbi, 2022. "Associated Information and Communication Technologies Challenges of Smart City Development," Sustainability, MDPI, vol. 14(23), pages 1-27, December.
    17. Fang Zhao & Catherine Prentice & Joseph Wallis & Arvind Patel & Marie-France Waxin, 2020. "An integrative study of the implications of the rise of coworking spaces in smart cities," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 467-486, December.
    18. Ali Cheshmehzangi & Andrew Flynn & May Tan-Mullins & Linjun Xie & Wu Deng & Eugenio Mangi & Weixuan Chen, 2021. "From Eco-Urbanism to Eco-Fusion: An Augmented Multi-Scalar Framework in Sustainable Urbanism," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    19. Elżbieta Szaruga & Elżbieta Załoga, 2022. "Qualitative–Quantitative Warning Modeling of Energy Consumption Processes in Inland Waterway Freight Transport on River Sections for Environmental Management," Energies, MDPI, vol. 15(13), pages 1-21, June.
    20. Nicos Komninos & Christina Kakderi & Luca Mora & Anastasia Panori & Elena Sefertzi, 2022. "Towards High Impact Smart Cities: a Universal Architecture Based on Connected Intelligence Spaces," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1169-1197, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2841-:d:793046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.