Author
Listed:
- Saleh M. Altowaijri
(Department of Information Systems, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia)
- Mohamed Ayari
(Department of Information Technology, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia)
Abstract
The integration of 5G technology with cloud and edge computing is redefining the digital landscape by enabling ultra-fast connectivity, low-latency communication, and scalable solutions across diverse application domains. This paper investigates the synergistic impact of 5G on cloud-to-edge architectures, emphasizing its transformative role in revolutionizing sectors such as healthcare, smart cities, industrial automation, and autonomous systems. Key advancements in 5G—including Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communication (URLLC), and Massive Machine-Type Communications (mMTC)—are examined for their role in enabling real-time data processing, edge intelligence, and IoT scalability. In addition to conceptual analysis, the paper presents simulation-based evaluations comparing 5G cloud-to-edge systems with traditional 4G cloud models. Quantitative results demonstrate significant improvements in latency, energy efficiency, reliability, and AI prediction accuracy. The study also explores challenges in infrastructure deployment, cybersecurity, and latency management while highlighting the growing opportunities for innovation in AI-driven automation and immersive consumer technologies. Future research directions are outlined, focusing on energy-efficient designs, advanced security mechanisms, and equitable access to 5G infrastructure. Overall, this study offers comprehensive insights and performance benchmarks that will serve as a valuable resource for researchers and practitioners working to advance next-generation digital ecosystems.
Suggested Citation
Saleh M. Altowaijri & Mohamed Ayari, 2025.
"The Synergistic Impact of 5G on Cloud-to-Edge Computing and the Evolution of Digital Applications,"
Mathematics, MDPI, vol. 13(16), pages 1-16, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:16:p:2634-:d:1726096
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2634-:d:1726096. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.