IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1173-d1042860.html
   My bibliography  Save this article

Considering Forward Electricity Prices for a Hydro Power Plant Risk Analysis in the Brazilian Electricity Market

Author

Listed:
  • Arthur Lauro

    (Electrical Energy Department, Federal University of Juiz de Fora, UFJF, Juiz de Fora 36036-330, Brazil)

  • Daniel Kitamura

    (Electrical Energy Department, Federal University of Juiz de Fora, UFJF, Juiz de Fora 36036-330, Brazil)

  • Waleska Lima

    (Electrical Energy Department, Federal University of Juiz de Fora, UFJF, Juiz de Fora 36036-330, Brazil)

  • Bruno Dias

    (Electrical Energy Department, Federal University of Juiz de Fora, UFJF, Juiz de Fora 36036-330, Brazil)

  • Tiago Soares

    (Center for Power and Energy Systems, Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal)

Abstract

The Brazilian Power System is mainly composed of renewable generation from hydroelectric and wind. Hence, spot and forward electricity prices tend to represent the inherently stochastic nature of these resources, while risk management is a measure taken by agents, especially hydro power plants (HPPs) to hedge against deep financial losses. A HPP goal is to maximize its profit considering uncertainties in forward electricity prices, spot prices, and generation scaling factor (GSF) for years ahead. Therefore, the objective of this work is to simulate the real decision-making process of a HPP, where they need to have a perspective of the forward market and future spot price assessment to negotiate forward electricity contracts. To do so, the present work models the uncertainty in electricity forward prices via two-stage stochastic programming, assessing the benefits of the stochastic solution in comparison to the deterministic one. In addition, different risk aversion levels are assessed using conditional value at risk (CVaR). An important conclusion is that the results show that the greater the HPP risk aversion is, the greater the energy selling via electricity forward contracts. Moreover, the proposed model has benefits in comparison to a deterministic approach.

Suggested Citation

  • Arthur Lauro & Daniel Kitamura & Waleska Lima & Bruno Dias & Tiago Soares, 2023. "Considering Forward Electricity Prices for a Hydro Power Plant Risk Analysis in the Brazilian Electricity Market," Energies, MDPI, vol. 16(3), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1173-:d:1042860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Machado, Bruno Goulart F. & Bhagwat, Pradyumna C., 2020. "The impact of the generation mix on the current regulatory framework for hydropower remuneration in Brazil," Energy Policy, Elsevier, vol. 137(C).
    2. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    3. Rego, Erik Eduardo & Parente, Virginia, 2013. "Brazilian experience in electricity auctions: Comparing outcomes from new and old energy auctions as well as the application of the hybrid Anglo-Dutch design," Energy Policy, Elsevier, vol. 55(C), pages 511-520.
    4. Lak, Omidreza & Rastegar, Mohammad & Mohammadi, Mohammad & Shafiee, Soroush & Zareipour, Hamidreza, 2021. "Risk-constrained stochastic market operation strategies for wind power producers and energy storage systems," Energy, Elsevier, vol. 215(PB).
    5. Laís Domingues Leonel & Mateus Henrique Balan & Dorel Soares Ramos & Erik Eduardo Rego & Rodrigo Ferreira de Mello, 2021. "Financial Risk Control of Hydro Generation Systems through Market Intelligence and Stochastic Optimization," Energies, MDPI, vol. 14(19), pages 1-18, October.
    6. Maier, Sebastian & Street, Alexandre & McKinnon, Ken, 2016. "Risk-averse portfolio selection of renewable electricity generator investments in Brazil: An optimised multi-market commercialisation strategy," Energy, Elsevier, vol. 115(P1), pages 1331-1343.
    7. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F. & Pousinho, H.M.I., 2019. "Decision making for sustainable aggregation of clean energy in day-ahead market: Uncertainty and risk," Renewable Energy, Elsevier, vol. 133(C), pages 692-702.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souhir, Ben Amor & Heni, Boubaker & Lotfi, Belkacem, 2019. "Price risk and hedging strategies in Nord Pool electricity market evidence with sector indexes," Energy Economics, Elsevier, vol. 80(C), pages 635-655.
    2. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.
    3. Shin, Hunyoung & Baldick, Ross, 2018. "Mitigating market risk for wind power providers via financial risk exchange," Energy Economics, Elsevier, vol. 71(C), pages 344-358.
    4. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    5. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    6. Zhu, Dafeng & Yang, Bo & Ma, Chengbin & Wang, Zhaojian & Zhu, Shanying & Ma, Kai & Guan, Xinping, 2022. "Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints," Applied Energy, Elsevier, vol. 317(C).
    7. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    8. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    9. Tegnér, Martin & Ernstsen, Rune Ramsdal & Skajaa, Anders & Poulsen, Rolf, 2017. "Risk-minimisation in electricity markets: Fixed price, unknown consumption," Energy Economics, Elsevier, vol. 68(C), pages 423-439.
    10. Alfredo Trespalacios & Lina M. Cortés & Javier Perote, 2021. "Modeling Electricity Price and Quantity Uncertainty: An Application for Hedging with Forward Contracts," Energies, MDPI, vol. 14(11), pages 1-26, June.
    11. Boroumand, Raphaël-Homayoun & Goutte, Stéphane & Guesmi, Khaled & Porcher, Thomas, 2019. "Potential benefits of optimal intra-day electricity hedging for the environment: The perspective of electricity retailers," Energy Policy, Elsevier, vol. 132(C), pages 1120-1129.
    12. Juan M. Gómez & Yeny E. Rodríguez, 2022. "Multiperiod Portfolio of Energy Purchasing Strategies including Climate Scenarios," Energies, MDPI, vol. 15(9), pages 1-25, April.
    13. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    14. Zhang, Yuanyuan & Zhao, Huiru & Li, Bingkang & Zhao, Yihang & Qi, Ze, 2022. "Research on credit rating and risk measurement of electricity retailers based on Bayesian Best Worst Method-Cloud Model and improved Credit Metrics model in China's power market," Energy, Elsevier, vol. 252(C).
    15. Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
    16. Kyriaki Psara & Christina Papadimitriou & Marily Efstratiadi & Sotiris Tsakanikas & Panos Papadopoulos & Paul Tobin, 2022. "European Energy Regulatory, Socioeconomic, and Organizational Aspects: An Analysis of Barriers Related to Data-Driven Services across Electricity Sectors," Energies, MDPI, vol. 15(6), pages 1-25, March.
    17. Parlane, Sarah & Ryan, Lisa, 2020. "Optimal contracts for renewable electricity," Energy Economics, Elsevier, vol. 91(C).
    18. George E. Halkos & Apostolos S. Tsirivis, 2019. "Energy Commodities: A Review of Optimal Hedging Strategies," Energies, MDPI, vol. 12(20), pages 1-19, October.
    19. Jens Baetens & Jeroen D. M. De Kooning & Greet Van Eetvelde & Lieven Vandevelde, 2020. "A Two-Stage Stochastic Optimisation Methodology for the Operation of a Chlor-Alkali Electrolyser under Variable DAM and FCR Market Prices," Energies, MDPI, vol. 13(21), pages 1-19, October.
    20. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1173-:d:1042860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.