IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1129-d1041571.html
   My bibliography  Save this article

Advances in Biodiesel Production from Microalgae

Author

Listed:
  • Emilia Neag

    (Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania)

  • Zamfira Stupar

    (Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania)

  • S. Andrada Maicaneanu

    (Madia Department of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, PA 15705, USA)

  • Cecilia Roman

    (Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania)

Abstract

Biofuels, as a renewable, eco-friendly, and cost-effective energy source, can reduce the dependence on fossil fuels. The researchers considered different approaches for obtaining high biodiesel yields from microalgae biomass. This work aims to present an overview of the feasibility of microalgae use in biodiesel production. Therefore, biodiesel production from microalgae oil via the transesterification process was explained in detail. The application of non-catalytic transesterification and catalytic transesterification was reviewed. The achievements in the application of homogenous catalysts, heterogeneous catalysts, and enzymatic catalysts for microalgae oil transesterification were discussed. The present technologies for biodiesel production from microalgae need more improvements to increase their efficiencies and reduce costs. Therefore, future research should focus on the development of effective catalysts for biodiesel production from microalgae biomass.

Suggested Citation

  • Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1129-:d:1041571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    2. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    3. Guldhe, Abhishek & Moura, Carla V.R. & Singh, Poonam & Rawat, Ismail & Moura, Edmilson M. & Sharma, Yogesh & Bux, Faizal, 2017. "Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst," Renewable Energy, Elsevier, vol. 105(C), pages 175-182.
    4. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
    5. Martinez-Guerra, Edith & Gude, Veera Gnaneswar & Mondala, Andro & Holmes, William & Hernandez, Rafael, 2014. "Microwave and ultrasound enhanced extractive-transesterification of algal lipids," Applied Energy, Elsevier, vol. 129(C), pages 354-363.
    6. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    7. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    8. Violeta Makareviciene & Egle Sendzikiene, 2022. "Application of Microalgae Biomass for Biodiesel Fuel Production," Energies, MDPI, vol. 15(11), pages 1-33, June.
    9. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    10. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    11. Teo, Siow Hwa & Islam, Aminul & Yusaf, Talal & Taufiq-Yap, Yun Hin, 2014. "Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst," Energy, Elsevier, vol. 78(C), pages 63-71.
    12. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    13. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    14. Jawaharraj, Kalimuthu & Karpagam, Rathinasamy & Ashokkumar, Balasubramaniem & Pratheeba, Chanda Nagarajan & Varalakshmi, Perumal, 2016. "Enhancement of biodiesel potential in cyanobacteria: using agro-industrial wastes for fuel production, properties and acetyl CoA carboxylase D (accD) gene expression of Synechocystis sp.NN," Renewable Energy, Elsevier, vol. 98(C), pages 72-77.
    15. Felix, Charles & Ubando, Aristotle & Madrazo, Cynthia & Gue, Ivan Henderson & Sutanto, Sylviana & Tran-Nguyen, Phuong Lan & Go, Alchris Woo & Ju, Yi-Hsu & Culaba, Alvin & Chang, Jo-Shu & Chen, Wei-Hsi, 2019. "Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters," Applied Energy, Elsevier, vol. 248(C), pages 526-537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    3. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    5. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    7. Park, Ji-Yeon & Kim, Min-Cheol & Cheng, Jun & Yang, Weijuan & Kim, Deog-Keun, 2020. "Extraction of microalgal oil from Nannochloropsis oceanica by potassium hydroxide-assisted solvent extraction for heterogeneous transesterification," Renewable Energy, Elsevier, vol. 162(C), pages 2056-2065.
    8. Srinuanpan, Sirasit & Cheirsilp, Benjamas & Kitcha, Wannakorn & Prasertsan, Poonsuk, 2017. "Strategies to improve methane content in biogas by cultivation of oleaginous microalgae and the evaluation of fuel properties of the microalgal lipids," Renewable Energy, Elsevier, vol. 113(C), pages 1229-1241.
    9. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    10. Kumar, B. Ramesh & Mathimani, Thangavel & Sudhakar, M.P. & Rajendran, Karthik & Nizami, Abdul-Sattar & Brindhadevi, Kathirvel & Pugazhendhi, Arivalagan, 2021. "A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    12. Aziz, Muhammad & Oda, Takuya & Kashiwagi, Takao, 2014. "Integration of energy-efficient drying in microalgae utilization based on enhanced process integration," Energy, Elsevier, vol. 70(C), pages 307-316.
    13. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    14. Eckert, C.T. & Frigo, E.P. & Albrecht, L.P. & Albrecht, A.J.P. & Christ, D. & Santos, W.G. & Berkembrock, E. & Egewarth, V.A., 2018. "Maize ethanol production in Brazil: Characteristics and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3907-3912.
    15. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    16. Ramos Tercero, Elia Armandina & Domenicali, Giacomo & Bertucco, Alberto, 2014. "Autotrophic production of biodiesel from microalgae: An updated process and economic analysis," Energy, Elsevier, vol. 76(C), pages 807-815.
    17. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    18. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    19. Ling, Jiayin & Tian, Yuan & de Toledo, Renata Alves & Shim, Hojae, 2017. "Cost reduction for the lipid production from distillery and domestic mixed wastewater by Rhodosporidium toruloides via the reutilization of spent seed culture medium," Energy, Elsevier, vol. 136(C), pages 135-141.
    20. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1129-:d:1041571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.