Enhancement of biodiesel potential in cyanobacteria: using agro-industrial wastes for fuel production, properties and acetyl CoA carboxylase D (accD) gene expression of Synechocystis sp.NN
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.02.038
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- El Arroussi, Hicham & Benhima, Redouane & Bennis, Iman & El Mernissi, Najib & Wahby, Imane, 2015. "Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress," Renewable Energy, Elsevier, vol. 77(C), pages 15-19.
- Rincón, L.E. & Jaramillo, J.J. & Cardona, C.A., 2014. "Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation," Renewable Energy, Elsevier, vol. 69(C), pages 479-487.
- Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
- Jack P. C. Kleijnen, 2015.
"Response Surface Methodology,"
International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104,
Springer.
- Kleijnen, Jack P.C., 2014. "Response Surface Methodology," Discussion Paper 2014-013, Tilburg University, Center for Economic Research.
- Jack P. C. Kleijnen, 2015.
"Response Surface Methodology,"
International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104,
Springer.
- Kleijnen, Jack P.C., 2014. "Response Surface Methodology," Discussion Paper 2014-013, Tilburg University, Center for Economic Research.
- Kleijnen, Jack P.C., 2014. "Response Surface Methodology," Other publications TiSEM 7f9f17ee-db7f-4041-a686-d, Tilburg University, School of Economics and Management.
- Muhammad Aminul Islam & Marie Magnusson & Richard J. Brown & Godwin A. Ayoko & Md. Nurun Nabi & Kirsten Heimann, 2013. "Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles," Energies, MDPI, vol. 6(11), pages 1-27, October.
- Torre Ugarte, Daniel de la & Walsh, Marie E. & Shapouri, Hosein & Slinsky, Stephen P., 2003. "The Economic Impacts of Bioenergy Crop Production on U.S. Crop Production," Agricultural Economic Reports 33997, United States Department of Agriculture, Economic Research Service.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
- Srinuanpan, Sirasit & Cheirsilp, Benjamas & Kitcha, Wannakorn & Prasertsan, Poonsuk, 2017. "Strategies to improve methane content in biogas by cultivation of oleaginous microalgae and the evaluation of fuel properties of the microalgal lipids," Renewable Energy, Elsevier, vol. 113(C), pages 1229-1241.
- Srinuanpan, Sirasit & Cheirsilp, Benjamas & Prasertsan, Poonsuk & Kato, Yasuo & Asano, Yasuhisa, 2018. "Strategies to increase the potential use of oleaginous microalgae as biodiesel feedstocks: Nutrient starvations and cost-effective harvesting process," Renewable Energy, Elsevier, vol. 122(C), pages 507-516.
- Anahas, Antonyraj Matharasi Perianaika & Muralitharan, Gangatharan, 2019. "Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 749-761.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anahas, Antonyraj Matharasi Perianaika & Muralitharan, Gangatharan, 2019. "Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 749-761.
- Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
- Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
- Dahmen-Ben Moussa, Ines & Chtourou, Haifa & Hassairi, Ilem & Sayadi, Sami & Dhouib, Abdelhafidh, 2019. "The effect of switching environmental conditions on content and structure of lipid produced by a wild strain Picochlorum sp," Renewable Energy, Elsevier, vol. 134(C), pages 406-415.
- Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
- Srinuanpan, Sirasit & Cheirsilp, Benjamas & Kitcha, Wannakorn & Prasertsan, Poonsuk, 2017. "Strategies to improve methane content in biogas by cultivation of oleaginous microalgae and the evaluation of fuel properties of the microalgal lipids," Renewable Energy, Elsevier, vol. 113(C), pages 1229-1241.
- Małgorzata Hawrot-Paw & Patryk Ratomski & Adam Koniuszy & Wojciech Golimowski & Mirosława Teleszko & Anna Grygier, 2021. "Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production," Energies, MDPI, vol. 14(21), pages 1-14, November.
- Marianela Cobos & Jae D. Paredes & J. Dylan Maddox & Gabriel Vargas-Arana & Leenin Flores & Carla P. Aguilar & Jorge L. Marapara & Juan C. Castro, 2017. "Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production," Energies, MDPI, vol. 10(2), pages 1-16, February.
- Srinuanpan, Sirasit & Cheirsilp, Benjamas & Prasertsan, Poonsuk & Kato, Yasuo & Asano, Yasuhisa, 2018. "Strategies to increase the potential use of oleaginous microalgae as biodiesel feedstocks: Nutrient starvations and cost-effective harvesting process," Renewable Energy, Elsevier, vol. 122(C), pages 507-516.
- Coşgun, Ahmet & Günay, M. Erdem & Yıldırım, Ramazan, 2021. "Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning," Renewable Energy, Elsevier, vol. 163(C), pages 1299-1317.
- Lakshmikandan, M. & Murugesan, A.G., 2016. "Enhancement of growth and biohydrogen production potential of Chlorella vulgaris MSU-AGM 14 by utilizing seaweed aqueous extract of Valoniopsis pachynema," Renewable Energy, Elsevier, vol. 96(PA), pages 390-399.
- Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
- Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
- Abomohra, Abd El-Fatah & Eladel, Hamed & Mohammed, Soha, 2022. "Dual use of a local Protosiphon isolate BENHA2020 for biodiesel production and antioxidant activity of lipid-free biomass: A novel biorefinery approach for biomass valorization," Renewable Energy, Elsevier, vol. 184(C), pages 1104-1111.
- Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
- Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
- Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
- Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
More about this item
Keywords
Cyanobacteria; Biodiesel; FAME; GC–MS; Semi-quantitative RT-PCR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:72-77. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.