IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7334-d672222.html
   My bibliography  Save this article

Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production

Author

Listed:
  • Małgorzata Hawrot-Paw

    (Department of Renewable Energy Engineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Patryk Ratomski

    (Department of Renewable Energy Engineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Adam Koniuszy

    (Department of Renewable Energy Engineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Wojciech Golimowski

    (Department of Agroengineering and Quality Analysis, Faculty of Engineering and Economics, Wroclaw University of Economics and Business, Komandorska 180/120, 53-345 Wroclaw, Poland)

  • Mirosława Teleszko

    (Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland)

  • Anna Grygier

    (Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland)

Abstract

Microalgae are considered to be potentially attractive feedstocks for biodiesel production, mainly due to their fast growth rate and high oil content accumulated in their cells. In this study, the suitability for biofuel production was tested for Chlorella vulgaris , Chlorella fusca , Oocystis submarina , and Monoraphidium strain. The effect of nutrient limitation on microalgae biomass growth, lipid accumulation, ash content, fatty acid profile, and selected physico-chemical parameters of algal biodiesel were analysed. The study was carried out in vertical tubular photobioreactors of 100 L capacity. The highest biomass content at 100% medium dose was found for Monoraphidium 525 ± 29 mg·L −1 . A 50% reduction of nutrients in the culture medium decreased the biomass content by 23% for O. submarina , 19% for Monoraphidium , 13% for C. vulgaris and 9% for C. fusca strain. Nutrient limitation increased lipid production and reduced ash content in microalgal cells. The highest values were observed for Oocystis submarina , with a 90% increase in lipids and a 45% decrease in ash content in the biomass under stress conditions. The fatty acid profile of particular microalgae strains was dominated by palmitic, oleic, linoleic, and linoleic acids. Nutrient stress increased the amount of saturated and unsaturated fatty acids affecting the quality of biodiesel, but this was determined by the type of strain.

Suggested Citation

  • Małgorzata Hawrot-Paw & Patryk Ratomski & Adam Koniuszy & Wojciech Golimowski & Mirosława Teleszko & Anna Grygier, 2021. "Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production," Energies, MDPI, vol. 14(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7334-:d:672222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evangelos G. Giakoumis & Christos K. Sarakatsanis, 2019. "A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition," Energies, MDPI, vol. 12(3), pages 1-30, January.
    2. El Arroussi, Hicham & Benhima, Redouane & Bennis, Iman & El Mernissi, Najib & Wahby, Imane, 2015. "Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress," Renewable Energy, Elsevier, vol. 77(C), pages 15-19.
    3. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    4. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    5. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    6. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.
    8. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    9. Muhammad Aminul Islam & Marie Magnusson & Richard J. Brown & Godwin A. Ayoko & Md. Nurun Nabi & Kirsten Heimann, 2013. "Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles," Energies, MDPI, vol. 6(11), pages 1-27, October.
    10. Sun, Jun & Xiong, Xiaoqian & Wang, Mudan & Du, Hua & Li, Jintao & Zhou, Dandan & Zuo, Jian, 2019. "Microalgae biodiesel production in China: A preliminary economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 296-306.
    11. Singh, Poonam & Kumari, Sheena & Guldhe, Abhishek & Misra, Rohit & Rawat, Ismail & Bux, Faizal, 2016. "Trends and novel strategies for enhancing lipid accumulation and quality in microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patryk Ratomski & Małgorzata Hawrot-Paw & Adam Koniuszy & Wojciech Golimowski & Andrzej Kwaśnica & Damian Marcinkowski, 2023. "Indicators of Engine Performance Powered by a Biofuel Blend Produced from Microalgal Biomass: A Step towards the Decarbonization of Transport," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Ana F. Esteves & Eva M. Salgado & José C. M. Pires, 2022. "Recent Advances in Microalgal Biorefineries," Energies, MDPI, vol. 15(16), pages 1-4, August.
    4. Małgorzata Hawrot-Paw & Patryk Ratomski, 2024. "Efficient Production of Microalgal Biomass—Step by Step to Industrial Scale," Energies, MDPI, vol. 17(4), pages 1-12, February.
    5. Małgorzata Hawrot-Paw & Magdalena Sąsiadek, 2023. "Optimization of Microalgal Biomass Production in Vertical Tubular Photobioreactors," Energies, MDPI, vol. 16(5), pages 1-14, March.
    6. Savienne M. F. E. Zorn & Ana Paula T. da Silva & Eduardo H. Bredda & Heitor B. S. Bento & Guilherme A. Pedro & Ana Karine F. Carvalho & Messias Borges Silva & Patrícia C. M. Da Rós, 2022. "In Situ Transesterification of Microbial Biomass for Biolubricant Production Catalyzed by Heteropolyacid Supported on Niobium," Energies, MDPI, vol. 15(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    4. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    5. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    6. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    7. Jawaharraj, Kalimuthu & Karpagam, Rathinasamy & Ashokkumar, Balasubramaniem & Pratheeba, Chanda Nagarajan & Varalakshmi, Perumal, 2016. "Enhancement of biodiesel potential in cyanobacteria: using agro-industrial wastes for fuel production, properties and acetyl CoA carboxylase D (accD) gene expression of Synechocystis sp.NN," Renewable Energy, Elsevier, vol. 98(C), pages 72-77.
    8. Preeti Pal & Kit Wayne Chew & Hong-Wei Yen & Jun Wei Lim & Man Kee Lam & Pau Loke Show, 2019. "Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    9. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    10. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    11. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    12. Islam, Muhammad Aminul & Heimann, Kirsten & Brown, Richard J., 2017. "Microalgae biodiesel: Current status and future needs for engine performance and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1160-1170.
    13. Safi, Carl & Zebib, Bachar & Merah, Othmane & Pontalier, Pierre-Yves & Vaca-Garcia, Carlos, 2014. "Morphology, composition, production, processing and applications of Chlorella vulgaris: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 265-278.
    14. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    15. Guo, Yang & Yeh, Thomas & Song, Wenhan & Xu, Donghai & Wang, Shuzhong, 2015. "A review of bio-oil production from hydrothermal liquefaction of algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 776-790.
    16. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    17. Ribeiro, Lauro A. & da Silva, Patrícia Pereira & Mata, Teresa M. & Martins, António A., 2015. "Prospects of using microalgae for biofuels production: Results of a Delphi study," Renewable Energy, Elsevier, vol. 75(C), pages 799-804.
    18. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    19. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    20. Singh, Kripal & Ansari, Faiz Ahmad & Ingle, Kapilkumar Nivrutti & Gupta, Sanjay Kumar & Ahirwal, Jitendra & Dhyani, Shalini & Singh, Shraddha & Abhilash, P.C. & Rawat, Ismael & Byun, Chaeho & Bux, Fai, 2023. "Microalgae from wastewaters to wastelands: Leveraging microalgal research conducive to achieve the UN Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7334-:d:672222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.