IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2429-d1086936.html
   My bibliography  Save this article

Optimization of Microalgal Biomass Production in Vertical Tubular Photobioreactors

Author

Listed:
  • Małgorzata Hawrot-Paw

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Magdalena Sąsiadek

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

Abstract

Microalgal biomass is a promising alternative and renewable substrate for bioenergy production. The main problem for its commercial application is to obtain and keep a high level of production by providing microalgae with appropriate conditions for growth. The aim of this study was to determine optimal culture conditions such as temperature, photoperiod, and pH. The amount of biomass by gravimetry, optical density by spectrophotometry, and productivity were analyzed. Suitable values of cultivation parameters allowed for the increased growth and biomass productivity of Arthrospira platensis (4.24 g·L −1 ), Chlamydomonas reinchardtii (1.19 g·L −1 ), Chlorella vulgaris (2.37 g·L −1 ), and Dunaliella salina (4.50 g·L −1 ) and optical density for Ch. reinchardtii and C. vulgaris . These species had maximum biomass productivity of 0.72, 0.12, 0.36, and 0.77 g·L −1 ·d −1 , respectively. Productivity was determined by cultivation temperature and for Ch. reinchardtii also by pH.

Suggested Citation

  • Małgorzata Hawrot-Paw & Magdalena Sąsiadek, 2023. "Optimization of Microalgal Biomass Production in Vertical Tubular Photobioreactors," Energies, MDPI, vol. 16(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2429-:d:1086936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dieu Linh Hoang & Chris Davis & Henri C. Moll & Sanderine Nonhebel, 2020. "Can Multiple Uses of Biomass Limit the Feedstock Availability for Future Biogas Production? An Overview of Biogas Feedstocks and Their Alternative Uses," Energies, MDPI, vol. 13(11), pages 1-16, May.
    2. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    3. Małgorzata Hawrot-Paw & Patryk Ratomski & Adam Koniuszy & Wojciech Golimowski & Mirosława Teleszko & Anna Grygier, 2021. "Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production," Energies, MDPI, vol. 14(21), pages 1-14, November.
    4. Wu, Di & Li, Lei & Zhao, Xiaofei & Peng, Yun & Yang, Pingjin & Peng, Xuya, 2019. "Anaerobic digestion: A review on process monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Hawrot-Paw & Patryk Ratomski, 2024. "Efficient Production of Microalgal Biomass—Step by Step to Industrial Scale," Energies, MDPI, vol. 17(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    4. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    5. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    6. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    7. Shashi Kumar & Apurv Yadav, 2018. "Comparative experimental investigation of preheated thumba oil for its performance testing on a CI engine," Energy & Environment, , vol. 29(4), pages 533-542, June.
    8. Shi, Yi & Xu, Jiuping, 2023. "A multi-objective approach to kitchen waste and excess sludge co-digestion for biomethane production with anaerobic digestion," Energy, Elsevier, vol. 262(PA).
    9. Ana F. Esteves & Eva M. Salgado & José C. M. Pires, 2022. "Recent Advances in Microalgal Biorefineries," Energies, MDPI, vol. 15(16), pages 1-4, August.
    10. Nour El Houda Chaher & Mehrez Chakchouk & Nils Engler & Abdallah Nassour & Michael Nelles & Moktar Hamdi, 2020. "Optimization of Food Waste and Biochar In-Vessel Co-Composting," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    11. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Dong, Wenjian & Yang, Youli & Liu, Chao & Zhang, Jiachao & Pan, Junting & Luo, Lin & Wu, Genyi & Awasthi, Mukesh Kumar & Yan, Binghua, 2023. "Caproic acid production from anaerobic fermentation of organic waste - Pathways and microbial perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Teng, Sin Yong & Loy, Adrian Chun Minh & Leong, Wei Dong & How, Bing Shen & Chin, Bridgid Lai Fui & Máša, Vítězslav, 2019. "Catalytic thermal degradation of Chlorella Vulgaris: Evolving deep neural networks for optimization," MPRA Paper 95772, University Library of Munich, Germany.
    14. He, Zhixia & Wang, Bin & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Chen, Haitao, 2020. "Synergistic effect of hydrothermal Co-liquefaction of Spirulina platensis and Lignin: Optimization of operating parameters by response surface methodology," Energy, Elsevier, vol. 201(C).
    15. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    16. Patryk Ratomski & Małgorzata Hawrot-Paw & Adam Koniuszy & Wojciech Golimowski & Andrzej Kwaśnica & Damian Marcinkowski, 2023. "Indicators of Engine Performance Powered by a Biofuel Blend Produced from Microalgal Biomass: A Step towards the Decarbonization of Transport," Energies, MDPI, vol. 16(14), pages 1-17, July.
    17. Małgorzata Hawrot-Paw & Adam Koniuszy & Patryk Ratomski & Magdalena Sąsiadek & Andrzej Gawlik, 2023. "Biogas Production from Arthrospira platensis Biomass," Energies, MDPI, vol. 16(10), pages 1-12, May.
    18. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    19. Zanganeh, Peyman & Goharrizi, Ataallah Soltani & Ayatollahi, Shahab & Feilizadeh, Mehrzad & Dashti, Hossein, 2020. "Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study," Applied Energy, Elsevier, vol. 268(C).
    20. Yellapu, Sravan Kumar & Klai, Nouha & Kaur, Rajwinder & Tyagi, Rajeshwar D. & Surampalli, Rao Y., 2019. "Oleaginous yeast biomass flocculation using bioflocculant produced in wastewater sludge and transesterification using petroleum diesel as a co-solvent," Renewable Energy, Elsevier, vol. 131(C), pages 217-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2429-:d:1086936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.