IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p796-d1030843.html
   My bibliography  Save this article

Allocative Efficiency towards Energy Transition: The Cases of Natural Gas and Electricity Markets

Author

Listed:
  • Amaro Olimpio Pereira

    (Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil)

  • Rafael Cancella Morais

    (Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil)

  • Bruno S. L. Cunha

    (Energy Planning Programme (PPE), COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil)

  • Maria Bernadete Gomes Pereira Sarmiento Gutierrez

    (Instituto de Pesquisa Econômica Aplicada (IPEA), Rio de Janeiro 20071-900, Brazil)

  • Mario Jorge Cardoso de Mendonça

    (Instituto de Pesquisa Econômica Aplicada (IPEA), Rio de Janeiro 20071-900, Brazil)

Abstract

Conventional economic theory indicates that the free market contributes to allocative efficiency. However, specific energy markets present network industry characteristics which distance them from perfect competition. These markets, therefore, need effective regulation. The liberalizing reforms which took place in the Organization for Economic Cooperation and Development (OECD) and emerging countries from the 1990s onwards have reduced the share of state ownership in the energy sector, but not its functions of regulation, coordination and planning. It is also worth noting the expansion of the government’s agenda due to the energy transition that has unequivocally imposed itself in the 21st century. This article uses the Slacks-Based Measure of the Data Envelopment Analysis (SBM-DEA) methodology to investigate the relationship between market liberalization and sustainability in a low-carbon energy transition context. Taking the cases of the natural gas and electricity markets, we verify whether liberalization contributes to the progress of the energy transition, driven by the emergency need to tackle climate change. The results show that the most advanced markets, in their processes of opening up, tend to be positively associated with a more vigorous energy transition. European nations, such as the United Kingdom and Norway, have experienced a relatively more advanced market liberalization leading to an efficient path toward energy transition. Chile, Canada and Colombia also have efficient scores regarding their energy transitions. For low performing countries, such as Brazil, the study suggests some calls for action that should be pursued to improve their energy market indicators, resulting in a stronger energy transition towards renewables, more competitive energy prices and a larger participation of natural gas in the energy mix, which will contribute to decreasing its external dependency.

Suggested Citation

  • Amaro Olimpio Pereira & Rafael Cancella Morais & Bruno S. L. Cunha & Maria Bernadete Gomes Pereira Sarmiento Gutierrez & Mario Jorge Cardoso de Mendonça, 2023. "Allocative Efficiency towards Energy Transition: The Cases of Natural Gas and Electricity Markets," Energies, MDPI, vol. 16(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:796-:d:1030843
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sioshansi, Fereidoon P., 2008. "Competitive Electricity Markets: Questions Remain about Design, Implementation, Performance," The Electricity Journal, Elsevier, vol. 21(2), pages 74-87, March.
    2. Zhou, Sheng & Xu, Zhiwei, 2022. "Energy efficiency assessment of RCEP member states: A three-stage slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 253(C).
    3. Viscusi, W. Kip & Harrington, Joseph E. , Jr. & Sappington, David E. M., 2018. "Economics of Regulation and Antitrust, fifth edition," MIT Press Books, The MIT Press, edition 5, volume 1, number 0262038064, December.
    4. John Kwoka, 2006. "The Role of Competition in Natural Monopoly: Costs, Public Ownership, and Regulation," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 29(1), pages 127-147, September.
    5. Zhang, Caiqing & Chen, Panyu, 2022. "Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries," Energy, Elsevier, vol. 241(C).
    6. Buhari Doğan & Oana M. Driha & Daniel Balsalobre Lorente & Umer Shahzad, 2021. "The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 1-12, January.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Leonardo Meeus, 2020. "The Evolution of Electricity Markets in Europe," Books, Edward Elgar Publishing, number 19187.
    9. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Manuel Moreno Rocha & Jorge D. Pertuz Ortiz & Neyder A. Rodriguez Ibanez, 2023. "A Diffuse Analysis Based on Analytical Processes to Prioritize Barriers in the Development of Renewable Energy Technologies in Alignment with the United Nations Sustainable Development Goals: Evidence," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 481-195, July.
    2. Tomasz Neumann, 2023. "Efficient Use of Low-Emission Power Supply for Means of Transport," Energies, MDPI, vol. 16(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    2. Zhishuo Zhang & Yao Xiao & Huayong Niu, 2022. "DEA and Machine Learning for Performance Prediction," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    3. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    4. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    6. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    7. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    8. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    9. Ling Bai & Tianran Guo & Wei Xu & Kang Luo, 2022. "The Spatial Differentiation and Driving Forces of Ecological Welfare Performance in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    10. Yulin Lu & Chengyu Li & Min-Jae Lee, 2023. "A Study on the Measurement and Influences of Energy Green Efficiency: Based on Panel Data from 30 Provinces in China," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    11. Ying Li & Yung-Ho Chiu & Tai-Yu Lin & Tzu-Han Chang, 2020. "Pre-Evaluating the Technical Efficiency Gains from Potential Mergers and Acquisitions in the IC Design Industry," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 525-559, April.
    12. Karima Kourtit, 2017. "Effective Clusters as Territorial Performance Engines in a Regional Development Strategy - A Triple-Layer DEA Assessment of the Aviation Valley in Poland," REGION, European Regional Science Association, vol. 4, pages 39-63.
    13. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    14. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    17. Zhen Shi & Fengping Wu & Huinan Huang & Xinrui Sun & Lina Zhang, 2019. "Comparing Economics, Environmental Pollution and Health Efficiency in China," IJERPH, MDPI, vol. 16(23), pages 1-30, December.
    18. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    19. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    20. Imanirad, Raha & Cook, Wade D. & Aviles-Sacoto, Sonia Valeria & Zhu, Joe, 2015. "Partial input to output impacts in DEA: The case of DMU-specific impacts," European Journal of Operational Research, Elsevier, vol. 244(3), pages 837-844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:796-:d:1030843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.