IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/41633.html
   My bibliography  Save this paper

A universal solution for units-invariance in data envelopment analysis

Author

Listed:
  • Xu, Jin
  • Zervopoulos, Panagiotis
  • Qian, Zhenhua
  • Cheng, Gang

Abstract

The directional distance function model is a generalization of the radial model in data envelopment analysis (DEA). The directional distance function model is appropriate for dealing with cases where undesirable outputs exist. However, it is not a units-invariant measure of efficiency, which limits its accuracy. In this paper, we develop a data normalization method for DEA, which is a universal solution for the problem of units-invariance in DEA. The efficiency scores remain unchanged when the original data are replaced with the normalized data in the existing units-invariant DEA models, including the radial and slack-based measure models, i.e., the data normalization method is compatible with the radial and slack-based measure models. Based on normalized data, a units-invariant efficiency measure for the directional distance function model is defined.

Suggested Citation

  • Xu, Jin & Zervopoulos, Panagiotis & Qian, Zhenhua & Cheng, Gang, 2012. "A universal solution for units-invariance in data envelopment analysis," MPRA Paper 41633, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:41633
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/41633/1/MPRA_paper_41633.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    3. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    4. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    5. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    6. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    7. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Gang & Qian, Zhenhua, 2011. "Dea数据标准化方法及其在方向距离函数模型中的应用 [Data normalization for data envelopment analysis and its application to directional distance function]," MPRA Paper 31995, University Library of Munich, Germany.
    2. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    3. Thomas Bournaris & George Vlontzos & Christina Moulogianni, 2019. "Efficiency of Vegetables Produced in Glasshouses: The Impact of Data Envelopment Analysis (DEA) in Land Management Decision Making," Land, MDPI, vol. 8(1), pages 1-11, January.
    4. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    5. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    6. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    7. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    8. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    9. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    10. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    11. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    12. Barbero, Javier & Zofío, José L., 2023. "The measurement of profit, profitability, cost and revenue efficiency through data envelopment analysis: A comparison of models using BenchmarkingEconomicEfficiency.jl," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    13. Alcaraz, Javier & Anton-Sanchez, Laura & Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "Russell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approach," European Journal of Operational Research, Elsevier, vol. 292(2), pages 663-674.
    14. Aparicio, Juan & Monge, Juan F., 2022. "The generalized range adjusted measure in data envelopment analysis: Properties, computational aspects and duality," European Journal of Operational Research, Elsevier, vol. 302(2), pages 621-632.
    15. Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
    16. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    17. Liang-Han Ma & Jin-Chi Hsieh & Yung-Ho Chiu, 2020. "Comparing regional differences in global energy performance," Energy & Environment, , vol. 31(6), pages 943-960, September.
    18. Youchao Tan & Udaya Shetty & Ali Diabat & T. Pakkala, 2015. "Aggregate directional distance formulation of DEA with integer variables," Annals of Operations Research, Springer, vol. 235(1), pages 741-756, December.
    19. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    20. Lim, Sungmook & Zhu, Joe, 2013. "Incorporating performance measures with target levels in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 230(3), pages 634-642.

    More about this item

    Keywords

    Data Envelopment Analysis; Data normalization; Units-invariance; Directional distance function;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.