IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7879-d1292690.html
   My bibliography  Save this article

Research on Risk Measurement of China’s Carbon Trading Market

Author

Listed:
  • Yanzhi Duan

    (Natural Gas Economic Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

  • Chunlei He

    (Natural Gas Economic Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

  • Li Yao

    (Natural Gas Economic Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

  • Yue Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Nan Tang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Zhong Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

Abstract

In today’s environmentally conscious world, carbon trading has emerged as a widely accepted economic instrument to mitigate the externalities resulting from deteriorating environmental problems. Consequently, the use of market-based mechanisms to address environmental issues has reached a global consensus. Many countries are implementing progressive steps by establishing carbon markets to promote low-carbon development and meet their carbon reduction targets. However, the inherent risks in carbon trading markets may hamper the formation of a reasonable carbon price signal, leading to inadequate stimulation of low-carbon technology investments and potential failure to achieve national emission reduction goals. Therefore, managing the risks associated with carbon trading markets is crucial. This study focuses on measuring the risk of China’s carbon market, with the primary aim of exploring carbon price fluctuation patterns and precisely measuring market risks. The risks associated with China’s carbon market are quantified and analyzed using the exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model, extreme value theory (EVT), and the value at risk (VaR) method. Results show that (1) the effect of external shocks on each carbon market is asymmetrical, and positive shocks exert considerable leverage effects on carbon price fluctuations. (2) EVT can be used to effectively fit the risks in the carbon markets. The risks of each carbon market show different characteristics. The risk of Hubei and Guangdong carbon markets is relatively small, and the dynamic VaR is nearly ±0.2. (3) Compared with the performance of the Chinese carbon market, the performance of the European Union Emission Trading Scheme is more stable, and its dynamic VaR for most of the period is within ±0.1, which is considerably lower than the VaR of other Chinese carbon markets. This study also proposes suitable policy implications to ensure the healthy and sustainable development of China’s carbon market.

Suggested Citation

  • Yanzhi Duan & Chunlei He & Li Yao & Yue Wang & Nan Tang & Zhong Wang, 2023. "Research on Risk Measurement of China’s Carbon Trading Market," Energies, MDPI, vol. 16(23), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7879-:d:1292690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," Applied Energy, Elsevier, vol. 99(C), pages 97-108.
    3. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    4. Cong, Ren & Lo, Alex Y., 2017. "Emission trading and carbon market performance in Shenzhen, China," Applied Energy, Elsevier, vol. 193(C), pages 414-425.
    5. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2015. "Carbon Price Analysis Using Empirical Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 195-206, February.
    6. Liu, Feng & Shao, Shuai & Li, Xin & Pan, Na & Qi, Yu, 2023. "Economic policy uncertainty, jump dynamics, and oil price volatility," Energy Economics, Elsevier, vol. 120(C).
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Annals of Operations Research, Springer, vol. 281(1), pages 373-395, October.
    2. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2023. "Enriching the value‐at‐risk framework to ensemble empirical mode decomposition with an application to the European carbon market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2975-2988, July.
    3. Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," Applied Energy, Elsevier, vol. 99(C), pages 97-108.
    4. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    5. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
    6. Xu, Jia & Tan, Xiujie & He, Gang & Liu, Yu, 2019. "Disentangling the drivers of carbon prices in China's ETS pilots — An EEMD approach," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 1-9.
    7. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    8. repec:ipg:wpaper:2014-422 is not listed on IDEAS
    9. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    10. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    11. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    12. CARPANTIER, Jean - François, 2010. "Commodities inventory effect," LIDAM Discussion Papers CORE 2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    14. Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
    15. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    16. Zhang, Yue-Jun & Fan, Ying & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Spillover effect of US dollar exchange rate on oil prices," Journal of Policy Modeling, Elsevier, vol. 30(6), pages 973-991.
    17. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    18. Fang Zhang & Zhengjun Zhang, 2020. "The tail dependence of the carbon markets: The implication of portfolio management," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    19. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    20. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    21. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7879-:d:1292690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.