IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7842-d1290552.html
   My bibliography  Save this article

Maintenance and Exploitation of Electric, Hybrid, and Internal Combustion Vehicles

Author

Listed:
  • Iwona Krzyżewska

    (Department of Transport and Computer Science, WSB University, 41-300 Dąbrowa Górnicza, Poland)

  • Katarzyna Chruzik

    (Department of Transport and Computer Science, WSB University, 41-300 Dąbrowa Górnicza, Poland)

Abstract

This paper presents an analysis of the costs, failure rate, vulnerability, and safety of electric, hybrid, and internal combustion vehicles (EV, HEV, and ICEV), including a review of literature sources, calculations, and investigations. Many literature sources do not provide information on maintenance costs (including repairs and servicing) and limit themselves to energy costs only. However, this cost is not the total cost of the maintenance of a vehicle. There is a lack of analysis of the difference between the maintenance and operating costs of vehicles. Similarly, vulnerability is difficult to determine in vehicles that are used for a short time in the market. The article presents an analysis of literature sources and industry reports on electromobility on maintenance costs, determines the failure rate, calculates vulnerability indices based on a survey, and carries out an expert risk assessment using the FMEA method. In the surveyed companies, the largest percentage of repairs are maintenance and service, mechanical, electrical and electronic, bodywork, and other repairs for each vehicle. Some of the most common faults in electric and hybrid vehicles are battery failures. The only hazard with a tolerable impact is the lack of sufficient data in the maintenance analysis. This risk can be mitigated in subsequent stages of product readiness once more data have been analysed.

Suggested Citation

  • Iwona Krzyżewska & Katarzyna Chruzik, 2023. "Maintenance and Exploitation of Electric, Hybrid, and Internal Combustion Vehicles," Energies, MDPI, vol. 16(23), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7842-:d:1290552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dianfeng Zhang & Yanlai Li & Yiqun Li & Zifan Shen, 2022. "Service Failure Risk Assessment and Service Improvement of Self-Service Electric Vehicle," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
    2. Chang, Tai-Wei, 2023. "An indispensable role in promoting the electric vehicle Industry: An empirical test to explore the integration framework of electric vehicle charger and electric vehicle purchase behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    3. Zhou, Yue & Wen, Ruoxi & Wang, Hewu & Cai, Hua, 2020. "Optimal battery electric vehicles range: A study considering heterogeneous travel patterns, charging behaviors, and access to charging infrastructure," Energy, Elsevier, vol. 197(C).
    4. Anna Skowrońska-Szmer & Anna Kowalska-Pyzalska, 2021. "Key Factors of Development of Electromobility AMONG Microentrepreneurs: A Case Study from Poland," Energies, MDPI, vol. 14(3), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kowalska-Pyzalska, Anna & Michalski, Rafał & Kott, Marek & Skowrońska-Szmer, Anna & Kott, Joanna, 2022. "Consumer preferences towards alternative fuel vehicles. Results from the conjoint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    3. Roger Książek & Katarzyna Gdowska & Antoni Korcyl, 2021. "Recyclables Collection Route Balancing Problem with Heterogeneous Fleet," Energies, MDPI, vol. 14(21), pages 1-16, November.
    4. Veronika Štekerová & Martin Kotek & Veronika Hartová, 2020. "Comparison of two electric vehicles in terms of real range in different types of operations," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 66(4), pages 140-145.
    5. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    6. Bassem Haidar & Pascal da Costa & Jan Lepoutre & Fabrice Vidal, 2020. "Which combination of battery capacity and charging power for battery electric vehicles: urban versus rural French case studies," Post-Print hal-03071656, HAL.
    7. Aixin Yang & Guiqing Zhang & Chenlu Tian & Wei Peng & Yechun Liu, 2024. "Charging Behavior Portrait of Electric Vehicle Users Based on Fuzzy C-Means Clustering Algorithm," Energies, MDPI, vol. 17(7), pages 1-27, March.
    8. Ren, Yilong & Lan, Zhengxing & Yu, Haiyang & Jiao, Gangxin, 2022. "Analysis and prediction of charging behaviors for private battery electric vehicles with regular commuting: A case study in Beijing," Energy, Elsevier, vol. 253(C).
    9. Xiangyu Luo & Rui Qiu, 2020. "Electric Vehicle Charging Station Location towards Sustainable Cities," IJERPH, MDPI, vol. 17(8), pages 1-22, April.
    10. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    11. Bogusław Bieda & Roger Książek & Katarzyna Gdowska & Antoni Korcyl, 2023. "Strategic Decision-Making for Multi-Period Fleet Transition Towards Zero-Emission: Preliminary Study," Sustainability, MDPI, vol. 15(24), pages 1-14, December.
    12. Ming-Tsang Lu & Hsi-Peng Lu & Chiao-Shan Chen, 2022. "Exploring the Key Priority Development Projects of Smart Transportation for Sustainability: Using Kano Model," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    13. Mehdi Montakhabi & Ine Van Zeeland & Pieter Ballon, 2022. "Barriers for Prosumers’ Open Business Models: A Resource-Based View on Assets and Data-Sharing in Electricity Markets," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    14. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    15. Subhaditya Shom & Kevin James & Mahmoud Alahmad, 2022. "Understanding the Correlation of Demographic Features with BEV Uptake at the Local Level in the United States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    16. Roman Chinoracky & Natalia Stalmasekova & Tatiana Corejova, 2022. "Trends in the Field of Electromobility—From the Perspective of Market Characteristics and Value-Added Services: Literature Review," Energies, MDPI, vol. 15(17), pages 1-19, August.
    17. Anna Kowalska-Pyzalska & Rafał Michalski & Marek Kott & Anna Skowrońska-Szmer & Joanna Kott, 2021. "Consumer preferences towards alternative fuel vehicles. Results from the conjoint analysis," WORking papers in Management Science (WORMS) WORMS/21/02, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    18. Zhu, Xiaoxi & Chiong, Raymond & Wang, Miaomiao & Liu, Kai & Ren, Minglun, 2021. "Is carbon regulation better than cash subsidy? The case of new energy vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 170-192.
    19. Anna Kowalska-Pyzalska & Marek Kott & Joanna Kott, 2021. "How Much Polish Consumers Know about Alternative Fuel Vehicles? Impact of Knowledge on the Willingness to Buy," Energies, MDPI, vol. 14(5), pages 1-19, March.
    20. Pareschi, Giacomo & Küng, Lukas & Georges, Gil & Boulouchos, Konstantinos, 2020. "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7842-:d:1290552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.