IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7718-d1285736.html
   My bibliography  Save this article

Solar Photovoltaic Home Systems in Malaysia: A Comprehensive Review and Analysis

Author

Listed:
  • Md Tanjil Sarker

    (PV Energy Storage Lab, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia)

  • Mohammed Hussein Saleh Mohammed Haram

    (PV Energy Storage Lab, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia)

  • Gobbi Ramasamy

    (PV Energy Storage Lab, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia)

  • Fahmid Al Farid

    (Centre for Digital Home, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia)

  • Sarina Mansor

    (Centre for Digital Home, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia)

Abstract

This paper presents a thorough review and analysis of solar photovoltaic (PV) home systems in Malaysia, offering a comprehensive exploration of their implementation, challenges, benefits, and future potential. As a nation striving to embrace sustainable and renewable energy solutions, Malaysia’s adoption of solar PV systems at the residential level is of paramount importance. The study delves into the current state of solar PV deployment, government initiatives, and policy frameworks that influence adoption trends. It examines the economic, environmental, and societal advantages of solar PV home systems, outlining their contribution to reducing electricity costs, carbon emissions, and energy dependence. Addressing barriers to wider acceptance, the paper scrutinizes challenges encompassing cost, awareness, intermittency, and regulatory constraints. Furthermore, the study evaluates the socio-economic implications of solar PV home systems, including potential job creation and energy independence. Technological advancements, such as enhanced efficiency and smart grid integration, are also explored for their role in surmounting obstacles. Drawing insights from practical case studies, the paper underscores successful installations and the lessons they offer. In examining policy and regulatory frameworks, it analyzes existing incentives while suggesting improvements to accelerate adoption. Finally, the paper offers a visionary perspective on the future trajectory of solar PV home systems in Malaysia, envisioning increased affordability, advanced energy storage solutions, and seamless integration with emerging technologies. This holistic analysis contributes valuable insights to propel Malaysia’s sustainable energy transition and inform strategic decision making for stakeholders across sectors.

Suggested Citation

  • Md Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Gobbi Ramasamy & Fahmid Al Farid & Sarina Mansor, 2023. "Solar Photovoltaic Home Systems in Malaysia: A Comprehensive Review and Analysis," Energies, MDPI, vol. 16(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7718-:d:1285736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Yuanlong & Zhu, Jie & Meng, Fanran & Zoras, Stamatis & McKechnie, Jon & Chu, Junze, 2020. "Energy assessment and economic sensitivity analysis of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 150(C), pages 101-115.
    2. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    3. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
    4. Anda, Martin & Temmen, Justin, 2014. "Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction," Renewable Energy, Elsevier, vol. 67(C), pages 119-127.
    5. de Jong, P. & Sánchez, A.S. & Esquerre, K. & Kalid, R.A. & Torres, E.A., 2013. "Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 526-535.
    6. Azhar Ghazali M. & Abdul Malek Abdul Rahman, 2012. "The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition," Energy and Environment Research, Canadian Center of Science and Education, vol. 2(1), pages 235-235, June.
    7. Mohammad Dehghani Madvar & Mohammad Alhuyi Nazari & Jamal Tabe Arjmand & Alireza Aslani & Roghayeh Ghasempour & Mohammad Hossein Ahmadi, 2018. "Analysis of stakeholder roles and the challenges of solar energy utilization in Iran," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(4), pages 438-451.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    2. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    3. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    4. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    5. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    6. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    7. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    8. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    9. Sourav Khanna & Victor Becerra & Adib Allahham & Damian Giaouris & Jamie M. Foster & Keiron Roberts & David Hutchinson & Jim Fawcett, 2020. "Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study," Energies, MDPI, vol. 13(3), pages 1-27, January.
    10. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    11. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    12. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    13. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    14. Frate, Cláudio Albuquerque & Brannstrom, Christian & de Morais, Marcus Vinícius Girão & Caldeira-Pires, Armando de Azevedo, 2019. "Procedural and distributive justice inform subjectivity regarding wind power: A case from Rio Grande do Norte, Brazil," Energy Policy, Elsevier, vol. 132(C), pages 185-195.
    15. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    16. Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.
    17. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    18. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    19. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    20. Kumar, Sandeep & Nehra, Monika & Deep, Akash & Kedia, Deepak & Dilbaghi, Neeraj & Kim, Ki-Hyun, 2017. "Quantum-sized nanomaterials for solar cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 821-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7718-:d:1285736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.