IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6603-d1239278.html
   My bibliography  Save this article

Technical and Economic Analysis of the Use of Electricity Generated by a BIPV System for an Educational Establishment in Poland

Author

Listed:
  • Dariusz Kurz

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, St. Piotrowo 3a, 60-965 Poznan, Poland)

  • Damian Głuchy

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, St. Piotrowo 3a, 60-965 Poznan, Poland)

  • Michał Filipiak

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, St. Piotrowo 3a, 60-965 Poznan, Poland)

  • Dawid Ostrowski

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology, St. Piotrowo 3a, 60-965 Poznan, Poland)

Abstract

In the face of ongoing climate changes and the current geopolitical situation, Renewable Energy Sources (RES) are continuously gaining popularity in many countries. Objectives related to environmental protection and the use of RES set by different countries all over the world, as well as by the European Union (EU), are becoming priorities for many. The increase in the installed capacity of photovoltaic systems has been growing steadily for several years, leading to the creation of new systems accompanying PV installations; this phenomenon has also been observed in Poland. This paper presents a photovoltaic system in the form of a bicycle shed next to a school building as an example of building-integrated photovoltaics (BIPV) without connection to the power grid. It was shown that the energy consumption profile should be properly correlated with the production profile, otherwise significant losses occur. Alternative methods to improve the correlation of production and energy consumption by using SCADA systems or building automation to properly manage the electricity generation and consumption installation were also proposed. Furthermore, it was shown that adopting a fixed discount rate in financial analyses can distort the picture of real profits. An analysis of the changes in the NPV ratio using variable discount rates was carried out when analyzing the entire life of the solar plant.

Suggested Citation

  • Dariusz Kurz & Damian Głuchy & Michał Filipiak & Dawid Ostrowski, 2023. "Technical and Economic Analysis of the Use of Electricity Generated by a BIPV System for an Educational Establishment in Poland," Energies, MDPI, vol. 16(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6603-:d:1239278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sojung Kim & Sumin Kim, 2023. "Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas," Energies, MDPI, vol. 16(12), pages 1-14, June.
    2. Cui, Yuanlong & Zhu, Jie & Meng, Fanran & Zoras, Stamatis & McKechnie, Jon & Chu, Junze, 2020. "Energy assessment and economic sensitivity analysis of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 150(C), pages 101-115.
    3. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Sepideh Abedi, 2023. "Design and Analysis of Grid-Connected Solar Photovoltaic Systems for Sustainable Development of Remote Areas," Energies, MDPI, vol. 16(7), pages 1-21, March.
    4. Inmaculada Guaita-Pradas & Ana Blasco-Ruiz, 2020. "Analyzing Profitability and Discount Rates for Solar PV Plants. A Spanish Case," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    5. Riyad Mubarak & Eduardo Weide Luiz & Gunther Seckmeyer, 2019. "Why PV Modules Should Preferably No Longer Be Oriented to the South in the Near Future," Energies, MDPI, vol. 12(23), pages 1-16, November.
    6. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    7. Ayesha Abbasi & Kiran Sultan & Sufyan Afsar & Muhammad Adnan Aziz & Hassan Abdullah Khalid, 2023. "Optimal Demand Response Using Battery Storage Systems and Electric Vehicles in Community Home Energy Management System-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-22, June.
    8. Ali M. Jasim & Basil H. Jasim & Soheil Mohseni & Alan C. Brent, 2023. "Energy Internet-Based Load Shifting in Smart Microgrids: An Experimental Study," Energies, MDPI, vol. 16(13), pages 1-26, June.
    9. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    10. Luka Budin & Goran Grdenić & Marko Delimar, 2021. "A Quadratically Constrained Optimization Problem for Determining the Optimal Nominal Power of a PV System in Net-Metering Model: A Case Study for Croatia," Energies, MDPI, vol. 14(6), pages 1-23, March.
    11. Sebastian Pater, 2023. "Increasing Energy Self-Consumption in Residential Photovoltaic Systems with Heat Pumps in Poland," Energies, MDPI, vol. 16(10), pages 1-14, May.
    12. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    13. Mohammed Qais & K. H. Loo & Hany M. Hasanien & Saad Alghuwainem, 2023. "Optimal Comfortable Load Schedule for Home Energy Management Including Photovoltaic and Battery Systems," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    14. Gustavo Leite Gonçalves & Raphael Abrahão & Paulo Rotella Junior & Luiz Célio Souza Rocha, 2022. "Economic Feasibility of Conventional and Building-Integrated Photovoltaics Implementation in Brazil," Energies, MDPI, vol. 15(18), pages 1-16, September.
    15. Jakub Jan Zięty & Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzykowski & Michał Krzyżaniak, 2022. "Legal Framework for the Sustainable Production of Short Rotation Coppice Biomass for Bioeconomy and Bioenergy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    16. Fabrizio M. Amoruso & Thorsten Schuetze, 2023. "Carbon Life Cycle Assessment and Costing of Building Integrated Photovoltaic Systems for Deep Low-Carbon Renovation," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Hysa & Anna Mularczyk, 2024. "PESTEL Analysis of the Photovoltaic Market in Poland—A Systematic Review of Opportunities and Threats," Resources, MDPI, vol. 13(10), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    2. Jakub Stolarski & Ewelina Olba-Zięty & Mariusz Jerzy Stolarski, 2024. "Economic Analysis of Renewable Energy Generation from a Multi-Energy Installation in a Single-Family House," Energies, MDPI, vol. 17(24), pages 1-21, December.
    3. Agnieszka Dembicka-Niemiec & Edyta Szafranek-Stefaniuk, 2025. "Financial Directions for Renewable Energy Sources Investments as a Support for Sustainable Development Policy—Examples of Polish Cities," Sustainability, MDPI, vol. 17(7), pages 1-17, April.
    4. Yi, Gaowei & Zhang, Da & Zhang, Wenlong & Li, Yan & Gong, Liang, 2025. "Exploiting seafloor hydrothermal energy through optimized closed-loop heat extraction," Renewable Energy, Elsevier, vol. 242(C).
    5. Hamoud Alafnan, 2024. "The Impact of PV Panel Degradation Rate, Initial System Efficiency, and Interest Rate on the Levelized Cost of Energy for PV Projects: Saudi Arabia as a Benchmark," Sustainability, MDPI, vol. 16(22), pages 1-20, November.
    6. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    7. Krzysztof Barbusiński & Paweł Kwaśnicki & Anna Gronba-Chyła & Agnieszka Generowicz & Józef Ciuła & Bartosz Szeląg & Francesco Fatone & Agnieszka Makara & Zygmunt Kowalski, 2024. "Influence of Environmental Conditions on the Electrical Parameters of Side Connectors in Glass–Glass Photovoltaic Modules," Energies, MDPI, vol. 17(3), pages 1-13, January.
    8. Yushi Wang & Beining Hu & Xianhai Meng & Runjin Xiao, 2024. "A Comprehensive Review on Technologies for Achieving Zero-Energy Buildings," Sustainability, MDPI, vol. 16(24), pages 1-26, December.
    9. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    10. Jaka Rober & Leon Maruša & Miloš Beković, 2023. "A Machine Learning Application for the Energy Flexibility Assessment of a Distribution Network for Consumers," Energies, MDPI, vol. 16(17), pages 1-20, August.
    11. Youngjin Kim & Sojung Kim, 2025. "Economic Analysis of Biofuel Production in Agrophotovoltaic Systems Using Building-Integrated Photovoltaics in South Korea," Energies, MDPI, vol. 18(8), pages 1-16, April.
    12. Kumar Ganti, Praful & Naik, Hrushikesh & Kanungo Barada, Mohanty, 2022. "Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree appr," Energy, Elsevier, vol. 244(PA).
    13. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    14. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    15. Konrad Seklecki & Marek Olesz & Marek Adamowicz & Mikołaj Nowak & Leszek Sławomir Litzbarski & Kamil Balcarek & Jacek Grochowski, 2025. "A Comprehensive System for Protection of Photovoltaic Installations in Normal and Emergency Conditions," Energies, MDPI, vol. 18(7), pages 1-16, March.
    16. Rezaeimozafar, Mostafa & Monaghan, Rory F.D. & Barrett, Enda & Duffy, Maeve, 2022. "A review of behind-the-meter energy storage systems in smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Elżbieta M. Zębek & Jakub J. Zięty, 2022. "Effect of Landfill Arson to a “Lax” System in a Circular Economy under the Current EU Energy Policy: Perspective Review in Waste Management Law," Energies, MDPI, vol. 15(22), pages 1-25, November.
    18. Deok-Kyeom Jung & Sung-Min Park, 2023. "Economic Value Estimation of Biogas Utilization in Public Wastewater Treatment Plants of the Republic of Korea," Energies, MDPI, vol. 16(5), pages 1-13, February.
    19. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.
    20. Lubov Petrichenko & Antans Sauhats & Illia Diahovchenko & Irina Segeda, 2022. "Economic Viability of Energy Communities versus Distributed Prosumers," Sustainability, MDPI, vol. 14(8), pages 1-24, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6603-:d:1239278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.