IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4957-d1179727.html
   My bibliography  Save this article

Energy Internet-Based Load Shifting in Smart Microgrids: An Experimental Study

Author

Listed:
  • Ali M. Jasim

    (Electrical Engineering Department, University of Basrah, Basrah 61001, Iraq)

  • Basil H. Jasim

    (Electrical Engineering Department, University of Basrah, Basrah 61001, Iraq)

  • Soheil Mohseni

    (Sustainable Energy Systems, Wellington Faculty of Engineering, Victoria University of Wellington, Wellington 6140, New Zealand)

  • Alan C. Brent

    (Sustainable Energy Systems, Wellington Faculty of Engineering, Victoria University of Wellington, Wellington 6140, New Zealand
    Department of Industrial Engineering and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7600, South Africa)

Abstract

This study investigated a grid-connected smart microgrid (MG) system integrating solar photovoltaic (PV) panels and a battery energy storage system (BESS) as distributed energy resources (DERs) to locally serve residential loads. The load-shifting demand-side management (DSM) technique was employed to effectively manage the load appliances. The proposed load-shifting algorithm relies on minimum price incentives to allow customers to allocate their load appliances economically during minimum price periods. The algorithm considers the waiting times and minimum tariff periods for appliances, calculates precise operating durations for each appliance, and prioritizes powering the appliances from the MG first, followed by the main grid. The system comprises two non-shiftable and three shiftable loads. When the MG power is insufficient to activate all shiftable loads, the system transfers the remaining unsupplied shiftable appliances to periods with low-priced energy. The Energy Internet concept is adopted to manage energy and monitor usage when a customer is unable to check the accuracy of their energy meter by supervising the system’s features on-site. The proposed comprehensive system enables load management, continuous monitoring, customer awareness, and energy cost saving. Six cases were studied, both numerically and experimentally, with varying MG power generation and load pre-scheduling periods, with and without DSM application. In all adopted cases, the implemented system save energy costs by at least 50%.

Suggested Citation

  • Ali M. Jasim & Basil H. Jasim & Soheil Mohseni & Alan C. Brent, 2023. "Energy Internet-Based Load Shifting in Smart Microgrids: An Experimental Study," Energies, MDPI, vol. 16(13), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4957-:d:1179727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gonçalves, Ivo & Gomes, Álvaro & Henggeler Antunes, Carlos, 2019. "Optimizing the management of smart home energy resources under different power cost scenarios," Applied Energy, Elsevier, vol. 242(C), pages 351-363.
    2. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    3. Bilal Naji Alhasnawi & Basil H. Jasim & Zain-Aldeen S. A. Rahman & Josep M. Guerrero & M. Dolores Esteban, 2021. "A Novel Internet of Energy Based Optimal Multi-Agent Control Scheme for Microgrid including Renewable Energy Resources," IJERPH, MDPI, vol. 18(15), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Kurz & Damian Głuchy & Michał Filipiak & Dawid Ostrowski, 2023. "Technical and Economic Analysis of the Use of Electricity Generated by a BIPV System for an Educational Establishment in Poland," Energies, MDPI, vol. 16(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    2. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    3. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    4. Xin Wang & Jun Yang & Lei Chen & Jifeng He, 2017. "Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet," Energies, MDPI, vol. 10(2), pages 1-20, February.
    5. Liu, Bo & Hou, Yufan & Luan, Wenpeng & Liu, Zishuai & Chen, Sheng & Yu, Yixin, 2023. "A divide-and-conquer method for compression and reconstruction of smart meter data," Applied Energy, Elsevier, vol. 336(C).
    6. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    7. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    8. Jun Liu & Jinchun Chen & Chao Wang & Zhang Chen & Xinglei Liu, 2020. "Market Trading Model of Urban Energy Internet Based on Tripartite Game Theory," Energies, MDPI, vol. 13(7), pages 1-24, April.
    9. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    10. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    11. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    12. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    13. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    14. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    15. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    16. Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).
    17. Zixiao Xu & Dechang Yang & Weilin Li, 2019. "Microgrid Group Trading Model and Solving Algorithm Based on Blockchain," Energies, MDPI, vol. 12(7), pages 1-19, April.
    18. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    19. Ebrahimi, Seyyed Reza & Rahimiyan, Morteza & Assili, Mohsen & Hajizadeh, Amin, 2022. "Home energy management under correlated uncertainties: A statistical analysis through Copula," Applied Energy, Elsevier, vol. 305(C).
    20. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4957-:d:1179727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.