IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5839-d1212060.html
   My bibliography  Save this article

Impact of Environmental Policy Mix on Carbon Emission Reduction and Social Welfare: Scenario Simulation Based on Private Vehicle Trajectory Big Data

Author

Listed:
  • Wenjie Chen

    (Business College, Central South University of Forestry and Technology, Changsha 410004, China)

  • Xiaogang Wu

    (Business College, Central South University of Forestry and Technology, Changsha 410004, China)

  • Zhu Xiao

    (College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China)

Abstract

Analyzing and investigating the impact of implementing an environmental policy mix on carbon emission from private cars and social welfare holds significant reference value. Firstly, based on vehicle trajectory big data, this paper employs reverse geocoding and artificial neural network models to predict carbon emissions from private cars in various provinces and cities in China. Secondly, by simulating different scenarios of carbon tax, carbon trading, and their policy mix, the propensity score matching model is constructed to explore the effects of the policy mix on carbon emission reduction from private cars and social welfare while conducting regional heterogeneity analysis. Finally, policy proposals are proposed to promote carbon emission reduction from private cars and enhance social welfare in China. The results indicate that the environmental policy mix has a significant positive impact on carbon emission reduction from private cars and social welfare. Furthermore, in the regional heterogeneity analysis, the implementation of the policy mix in eastern regions has a significant positive effect on both carbon emission reduction from private cars and social welfare, while in central and western regions, it shows a significant positive impact on social welfare but has no significant effect on carbon emission reduction in the private car sector.

Suggested Citation

  • Wenjie Chen & Xiaogang Wu & Zhu Xiao, 2023. "Impact of Environmental Policy Mix on Carbon Emission Reduction and Social Welfare: Scenario Simulation Based on Private Vehicle Trajectory Big Data," Energies, MDPI, vol. 16(15), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5839-:d:1212060
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harwatt, Helen & Tight, Miles & Bristow, Abigail L. & Gühnemann, Astrid, 2011. "Personal carbon trading and fuel price increases in the transport sector: an exploratory study of public response in the UK," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 47-70.
    2. Chen, Zi-yue & Nie, Pu-yan, 2016. "Effects of carbon tax on social welfare: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1607-1615.
    3. Fan, Jianshuang & Zhou, Lin & Zhang, Yan & Shao, Shuai & Ma, Miao, 2021. "How does population aging affect household carbon emissions? Evidence from Chinese urban and rural areas," Energy Economics, Elsevier, vol. 100(C).
    4. Havranek, Tomas & Kokes, Ondrej, 2015. "Income elasticity of gasoline demand: A meta-analysis," Energy Economics, Elsevier, vol. 47(C), pages 77-86.
    5. Regan, Donald H, 1972. "The Problem of Social Cost Revisited," Journal of Law and Economics, University of Chicago Press, vol. 15(2), pages 427-437, October.
    6. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    7. Li, Aijun & Lin, Boqiang, 2013. "Comparing climate policies to reduce carbon emissions in China," Energy Policy, Elsevier, vol. 60(C), pages 667-674.
    8. Ding, Suiting & Zhang, Ming & Song, Yan, 2019. "Exploring China's carbon emissions peak for different carbon tax scenarios," Energy Policy, Elsevier, vol. 129(C), pages 1245-1252.
    9. Chalak, Ali & Al-Naghi, Hani & Irani, Alexandra & Abou-Zeid, Maya, 2016. "Commuters’ behavior towards upgraded bus services in Greater Beirut: Implications for greenhouse gas emissions, social welfare and transport policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 265-285.
    10. Yang, Lisha & Li, Yutianhao & Liu, Hongxun, 2021. "Did carbon trade improve green production performance? Evidence from China," Energy Economics, Elsevier, vol. 96(C).
    11. Donald B. Marron & Eric J. Toder, 2014. "Tax Policy Issues in Designing a Carbon Tax," American Economic Review, American Economic Association, vol. 104(5), pages 563-568, May.
    12. Baranzini, Andrea & Goldemberg, Jose & Speck, Stefan, 2000. "A future for carbon taxes," Ecological Economics, Elsevier, vol. 32(3), pages 395-412, March.
    13. Lin, Boqiang & Shi, Lei, 2022. "Do environmental quality and policy changes affect the evolution of consumers’ intentions to buy new energy vehicles," Applied Energy, Elsevier, vol. 310(C).
    14. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junmei Qi & Yi Song & Yijun Zhang, 2023. "Environmental Protection Tax and Energy Efficiency: Evidence from Chinese City-Level Data," Energies, MDPI, vol. 16(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saelim, Supawan, 2019. "Carbon tax incidence on household consumption: Heterogeneity across socio-economic factors in Thailand," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 159-174.
    2. Dong, Zhaoyingzi & Xia, Chuyu & Fang, Kai & Zhang, Weiwen, 2022. "Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control," Energy Policy, Elsevier, vol. 165(C).
    3. Anan Wattanakuljarus, 2019. "Effects and burdens of a carbon tax scheme in Thailand," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 173-219, June.
    4. Dissanayake, Sumali & Mahadevan, Renuka & Asafu-Adjaye, John, 2020. "Evaluating the efficiency of carbon emissions policies in a large emitting developing country," Energy Policy, Elsevier, vol. 136(C).
    5. Jean Andrei & Mihai Mieila & Gheorghe H. Popescu & Elvira Nica & Manole Cristina, 2016. "The Impact and Determinants of Environmental Taxation on Economic Growth Communities in Romania," Energies, MDPI, vol. 9(11), pages 1-11, November.
    6. Munguía-López, Aurora del Carmen & González-Bravo, Ramón & Ponce-Ortega, José María, 2019. "Evaluation of carbon and water policies in the optimization of water distribution networks involving power-desalination plants," Applied Energy, Elsevier, vol. 236(C), pages 927-936.
    7. Jeffrey, Cynthia & Perkins, Jon D., 2015. "The association between energy taxation, participation in an emissions trading system, and the intensity of carbon dioxide emissions in the European Union," The International Journal of Accounting, Elsevier, vol. 50(4), pages 397-417.
    8. An, Yunfei & Zhou, Dequn & Wang, Qunwei & Shi, Xunpeng & Taghizadeh-Hesary, Farhad, 2022. "Mitigating size bias for carbon pricing in small Asia-Pacific countries: Increasing block carbon tax," Energy Policy, Elsevier, vol. 161(C).
    9. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    10. Andreas Welling, 2017. "Optimal Carbon Tax Scheme under Uncertainty in an Oligopolistic Market of Polluters," FEMM Working Papers 170001, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    11. Jun Wang & Rui Ma & Xinman Lu & Baoqin Yu, 2022. "Emission reduction cooperation in a dynamic supply chain with competitive retailers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14261-14297, December.
    12. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    13. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    14. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    15. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    16. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    17. Claudia Kettner-Marx & Daniela Kletzan-Slamanig, 2018. "Carbon Taxes from an Economic Perspective," WIFO Working Papers 554, WIFO.
    18. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    19. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    20. Cheng, Ya & Sinha, Avik & Ghosh, Vinit & Sengupta, Tuhin & Luo, Huawei, 2021. "Carbon Tax and Energy Innovation at Crossroads of Carbon Neutrality: Designing a Sustainable Decarbonization Policy," MPRA Paper 108185, University Library of Munich, Germany, revised 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5839-:d:1212060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.