IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5190-d1187712.html
   My bibliography  Save this article

The Carbon Footprint of Hydrogen Produced with State-of-the-Art Photovoltaic Electricity Using Life-Cycle Assessment Methodology

Author

Listed:
  • Mehrshad Kolahchian Tabrizi

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Jacopo Famiglietti

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Davide Bonalumi

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Stefano Campanari

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

Abstract

The production of hydrogen as both chemical feed and energy carrier using low-carbon technologies is one of the solutions to reach net-zero emissions. This paper, firstly, reviews the publications on the life-cycle assessment of photovoltaic (PV)-based hydrogen production focused on the carbon footprint. Secondly, it updates the global warming potential (GWP) values of this H 2 production process considering the state-of-the-art PV panels for installation in Italy. In the literature, H 2 produced in Europe and the rest of the world results in a mean GWP equal to 4.83 and 3.82 kg CO 2 eq./kg H 2 , respectively, in which PV systems contribute the highest share. The average efficiency of PV panels assumed in the literature is lower than the current PV modules. Updating the supply chain, efficiency, and manufacturing energy and material flows of PV modules can decrease the GWP value of the H 2 produced by nearly 60% (1.75 kg CO 2 eq./kg H 2 , with use of alkaline electrolyzer) in the Italian context, which can be further reduced with advancements in PV panels or electrolysis efficiency. The study proves that advancement in the PV industry and additional savings in the electrolyzer’s electrical demand can further decrease the carbon footprint of PV-based H 2 .

Suggested Citation

  • Mehrshad Kolahchian Tabrizi & Jacopo Famiglietti & Davide Bonalumi & Stefano Campanari, 2023. "The Carbon Footprint of Hydrogen Produced with State-of-the-Art Photovoltaic Electricity Using Life-Cycle Assessment Methodology," Energies, MDPI, vol. 16(13), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5190-:d:1187712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    2. Akito Ozawa & Mai Inoue & Naomi Kitagawa & Ryoji Muramatsu & Yurie Anzai & Yutaka Genchi & Yuki Kudoh, 2017. "Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains," Sustainability, MDPI, vol. 9(7), pages 1-26, June.
    3. Jan Christian Koj & Christina Wulf & Andrea Schreiber & Petra Zapp, 2017. "Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis," Energies, MDPI, vol. 10(7), pages 1-15, June.
    4. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2020. "Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries," Energy, Elsevier, vol. 208(C).
    5. Miller, Ian & Gençer, Emre & Vogelbaum, Hilary S. & Brown, Patrick R. & Torkamani, Sarah & O'Sullivan, Francis M., 2019. "Parametric modeling of life cycle greenhouse gas emissions from photovoltaic power," Applied Energy, Elsevier, vol. 238(C), pages 760-774.
    6. Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Novieto, Divine T. & Wilson, Earle A., 2016. "The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia," Renewable Energy, Elsevier, vol. 95(C), pages 495-509.
    7. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    8. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    9. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    10. Mehedi, Tanveer Hassan & Gemechu, Eskinder & Kumar, Amit, 2022. "Life cycle greenhouse gas emissions and energy footprints of utility-scale solar energy systems," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrshad Kolahchian Tabrizi & Tarcisio Cerri & Davide Bonalumi & Tommaso Lucchini & Morris Brenna, 2024. "Retrofit of Diesel Engines with H 2 for Potential Decarbonization of Non-Electrified Railways: Assessment with Lifecycle Analysis and Advanced Numerical Modeling," Energies, MDPI, vol. 17(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    2. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    3. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    4. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    5. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    6. Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
    7. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    8. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    9. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    10. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. White, Lee V. & Fazeli, Reza & Cheng, Wenting & Aisbett, Emma & Beck, Fiona J. & Baldwin, Kenneth G.H. & Howarth, Penelope & O’Neill, Lily, 2021. "Towards emissions certification systems for international trade in hydrogen: The policy challenge of defining boundaries for emissions accounting," Energy, Elsevier, vol. 215(PA).
    12. Ekaterina Syrtsova & Anton Pyzhev & Evgeniya Zander, 2022. "Social, Economic, and Environmental Effects of Electricity and Heat Generation in Yenisei Siberia: Is there an Alternative to Coal?," Energies, MDPI, vol. 16(1), pages 1-19, December.
    13. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    14. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    15. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    16. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    17. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    18. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    19. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    20. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5190-:d:1187712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.