IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4730-d1171810.html
   My bibliography  Save this article

Reliable Thermal-Physical Modeling of Lithium-Ion Batteries: Consistency between High-Frequency Impedance and Ion Transport

Author

Listed:
  • Gabriele Sordi

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Claudio Rabissi

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Andrea Casalegno

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

Abstract

Among lithium-ion battery diagnostic tests, electrochemical impedance spectroscopy, being highly informative on the physics of battery operation within limited testing times, deserves a prominent role in the identification of model parameters and the interpretation of battery state. Nevertheless, a reliable physical simulation and interpretation of battery impedance spectra is still to be addressed, due to its intrinsic complexity. An improved methodology for the calibration of a state-of-the-art physical model is hereby presented, focusing on high-energy batteries, which themselves require a careful focus on the high-frequency resistance of the impedance response. In this work, the common assumption of the infinite conductivity of the current collectors is questioned, presenting an improved methodology for simulating the pure resistance of the cell. This enables us to assign the proper contribution value to current collectors’ resistance and, in turn, not to underestimate electrolyte conductivity, thereby preserving the physical relation between electrolyte conductivity and diffusivity and avoiding physical inconsistencies between impedance spectra and charge–discharge curves. The methodology is applied to the calibration of the model on a commercial sample, demonstrating the reliability and physical consistency of the solution with a set of discharge curves, EIS, and a dynamic driving cycle under a wide range of operating conditions.

Suggested Citation

  • Gabriele Sordi & Claudio Rabissi & Andrea Casalegno, 2023. "Reliable Thermal-Physical Modeling of Lithium-Ion Batteries: Consistency between High-Frequency Impedance and Ion Transport," Energies, MDPI, vol. 16(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4730-:d:1171810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    2. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    3. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    4. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    5. Xiao Yang & Long Chen & Xing Xu & Wei Wang & Qiling Xu & Yuzhen Lin & Zhiguang Zhou, 2017. "Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization," Energies, MDPI, vol. 10(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    4. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    5. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    6. Omid Norouzi & Animesh Dutta, 2022. "The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste," Energies, MDPI, vol. 15(2), pages 1-17, January.
    7. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    8. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    9. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    11. Semyon D. Shraer & Nikita D. Luchinin & Ivan A. Trussov & Dmitry A. Aksyonov & Anatoly V. Morozov & Sergey V. Ryazantsev & Anna R. Iarchuk & Polina A. Morozova & Victoria A. Nikitina & Keith J. Steven, 2022. "Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    13. Mi Tian & Yanchunxiao Qi & Eun-Suok Oh, 2021. "Application of a Polyacrylate Latex to a Lithium Iron Phosphate Cathode as a Binder Material," Energies, MDPI, vol. 14(7), pages 1-10, March.
    14. Mina Naguib & Aashit Rathore & Nathan Emery & Shiva Ghasemi & Ryan Ahmed, 2023. "Robust Electro-Thermal Modeling of Lithium-Ion Batteries for Electrified Vehicles Applications," Energies, MDPI, vol. 16(16), pages 1-20, August.
    15. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    16. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    17. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Yong Li & Jue Yang & Wei Long Liu & Cheng Lin Liao, 2020. "Multi-Level Model Reduction and Data-Driven Identification of the Lithium-Ion Battery," Energies, MDPI, vol. 13(15), pages 1-23, July.
    19. Hu, Yu & Armada, Miguel & Jesús Sánchez, María, 2022. "Potential utilization of battery energy storage systems (BESS) in the major European electricity markets," Applied Energy, Elsevier, vol. 322(C).
    20. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4730-:d:1171810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.